cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125187 Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.

Original entry on oeis.org

1, 1, 3, 12, 52, 232, 1049, 4777, 21845, 100159, 460023, 2115350, 9735205, 44829766, 206526972, 951759621, 4387156587, 20226421380, 93264500832, 430091815527, 1983549213861, 9148582037193, 42197572190160, 194643215702835
Offset: 0

Views

Author

Emeric Deutsch, Dec 19 2006

Keywords

Comments

[1, 3, 12, 52, 232, ...] is INVERT transform of [1, 2, 27, 108, 440, ...] A026726. - Michael Somos, Apr 15 2012
HANKEL transform of sequence and the sequence omitting a(0) is the odd and even bisections of Fibonacci numbers respectively. This is the unique sequence with that property. - Michael Somos, Apr 15 2012
Bisection (even part) of A224747. - Alois P. Heinz, Jul 29 2013

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 52*x^4 + 232*x^5 + 1049*x^6 + 4777*x^7 + 21845*x^8 + ...
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*C)/(2-x-(1+x)*C): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=0..26);
  • Mathematica
    a[ n_] := SeriesCoefficient[ (2 - 9 x + x^2 + (x + x^2) Sqrt[1 - 4 x]) / (2 (1 - 5 x + 2 x^2 - x^3)), {x, 0, n}]; (* Michael Somos, Jan 14 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x + x * O(x^n)) ) / (2 * (1 - 5*x + 2*x^2 - x^3)), n))}; /* Michael Somos, Jan 14 2014 */

Formula

G.f.: [2-(1+x)C(x)]/[2-x-(1+x)C(x)], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = upper left term in M^n, where M is an infinite square production matrix in which two columns of (1,2,3,...) are prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, 0, ...
2, 2, 1, 0, 0, 0, ...
3, 3, 1, 1, 0, 0, ...
4, 4, 1, 1, 1, 0, ...
5, 5, 1, 1, 1, 1, ...
... (End)
Given g.f. A(x), then 0 = A(x)^2 * (x^3 - 2*x^2 + 5*x - 1) + A(x) *(x^2 - 9*x + 2) + (x^2 + 4*x -1). - Michael Somos, Jan 14 2014
0 = a(n)*(16*a(n+1) +6*a(n+2) -14*a(n+3) +210*a(n+4) -128*a(n+5) +18*a(n+6)) +a(n+1)*(-46*a(n+1) +143*a(n+2) -173*a(n+3) -283*a(n+4) +202*a(n+5) -29*a(n+6)) +a(n+2)*(-63*a(n+2) +386*a(n+3) +765*a(n+4) -529*a(n+5) +75*a(n+6)) +a(n+3)*(-559*a(n+3) +509*a(n+4) -149*a(n+5) +19*a(n+6)) +a(n+4)*(-108*a(n+4) +71*a(n+5) -12*a(n+6)) +a(n+5)*(-4*a(n+5) +a(n+6)). - Michael Somos, Jan 14 2014
G.f.: ( 2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x) ) / (2 - 10*x + 4*x^2 - 2*x^3). - Michael Somos, Apr 15 2012
G.f. = (1 - 3*y + y^2) / (1 - 4*y + 3*y^2 - y^3) = 1 / (1 - y / (1 - y / (1 - 2*y / (1 + y / (2 - y))))) where y = (1 - sqrt(1 - 4*x)) / 2. - Michael Somos, Apr 12 2012
D-finite with recurrence (-n+1)*a(n) +4*(2*n-3)*a(n-1) +(-13*n+19)*a(n-2) +(-13*n+75)*a(n-3) +(5*n-29)*a(n-4) +2*(-2*n+9)*a(n-5)=0. - R. J. Mathar, Jul 27 2013