A125201 a(n) = 8*n^2 - 7*n + 1.
1, 2, 19, 52, 101, 166, 247, 344, 457, 586, 731, 892, 1069, 1262, 1471, 1696, 1937, 2194, 2467, 2756, 3061, 3382, 3719, 4072, 4441, 4826, 5227, 5644, 6077, 6526, 6991, 7472, 7969, 8482, 9011, 9556, 10117, 10694, 11287, 11896, 12521, 13162, 13819, 14492, 15181, 15886
Offset: 0
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Two strict long-legged M's can divide the plane into a(2) = 19 regions.
- N. J. A. Sloane, Three strict long-legged M's can divide the plane into a(3) = 52 regions.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[8*n^2-7*n+1:n in [1..44]]; // Vincenzo Librandi, Dec 27 2010
-
Mathematica
Table[8*n^2 - 7*n + 1, {n, 44}] (* Arkadiusz Wesolowski, Feb 15 2012 *)
-
PARI
a(n)=8*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 1 + A051870(n). - Omar E. Pol, Sep 05 2011
From Arkadiusz Wesolowski, Dec 25 2011: (Start)
a(1) = 2, a(n) = a(n-1) + 16*n - 15.
a(n) = 2*a(n-1) - a(n-2) + 16 with a(1) = 2 and a(2) = 19.
G.f.: (1 - x + 16*x^2)/(1 - x)^3. (End)
Sum_{n>=1} 1/a(n) = (psi(9/16+sqrt(17)/16) - psi(9/16-sqrt(17)/16))/sqrt(17) = 0.61242052... - R. J. Mathar, Apr 22 2024
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(8*x^2 + x + 1) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Extensions
a(0) = 1 added by N. J. A. Sloane, Aug 01 2025 (this will require several additional changes).
Comments