A125294 Numerator of (Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2).
1, 5, 7, 5, 11, 91, 1, 17, 19, 11, 23, 13, 1, 29, 31, 17, 1, 703, 1, 41, 43, 23, 47, 1, 1, 53, 1, 29, 59, 1891, 1, 1, 67, 1, 71, 2701, 1, 1, 79, 41, 83, 43, 1, 89, 1, 47, 1, 97, 1, 101, 103, 53, 107, 109, 1, 113, 1, 59, 1, 61, 1, 1, 127, 1, 131, 67, 1, 137, 139, 71, 1, 73, 1, 149
Offset: 1
Examples
The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735. - _Petros Hadjicostas_, May 09 2020
Programs
-
Mathematica
Table[Numerator[n(n+1)(2n+1)/6/(n!)^2],{n,1,500}]
-
PARI
a(n) = numerator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020
Formula
a(n) = numerator((Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2)).
a(n) = numerator(n*(n+1)*(2*n+1)/6/(n!)^2).
Comments