A125307 Number of increasing trees with branches of height 1.
1, 1, 4, 15, 80, 480, 3444, 27790, 253504, 2556792, 28382880, 343071168, 4490999424, 63253633872, 954133373088, 15343385194800, 262060291958784, 4737396899952384, 90370907329842432, 1814141041750834560, 38229440785429201920, 843786230514306621696
Offset: 1
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997. Proposition 1.3.16, p. 25.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..448
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Programs
-
Mathematica
Range[0, 21]!CoefficientList[ Series[(x - 1 + Log[1 - x])/((1 - x)^2(Log[1 - x] - 1)), {x, 0, 21}], x] (* Robert G. Wilson v, Jan 26 2007 *)
-
Maxima
a(n):=n!*(sum((-1)^(m)*(n-m+1)/(m-1)!*sum(k!*stirling1(m-1,k), k,1,m-1), m,2,n)+1); /* Vladimir Kruchinin, Sep 09 2010 */
-
PARI
x='x+O('x^30); Vec(serlaplace( (x-1+log(1-x))/((x-1)^2*(log(1-x) -1)))) \\ G. C. Greubel, Sep 05 2018
Formula
E.g.f.: (x-1+log(1-x)) / ( (x-1)^2 (log(1-x)-1) ).
a(n) = n!*(sum((-1)^(m)*(n-m+1)/(m-1)!*sum(k!*Stirling1(m-1,k),k,1,m-1),m,2,n)+1). - Vladimir Kruchinin, Sep 09 2010
a(n) ~ n!*n*(1 - 1/log(n) + gamma/log(n)^2), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 25 2013
Extensions
More terms from N. J. A. Sloane, Jan 26 2007