cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125307 Number of increasing trees with branches of height 1.

Original entry on oeis.org

1, 1, 4, 15, 80, 480, 3444, 27790, 253504, 2556792, 28382880, 343071168, 4490999424, 63253633872, 954133373088, 15343385194800, 262060291958784, 4737396899952384, 90370907329842432, 1814141041750834560, 38229440785429201920, 843786230514306621696
Offset: 1

Views

Author

Wenjin Woan, Jan 17 2007

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997. Proposition 1.3.16, p. 25.

Programs

  • Mathematica
    Range[0, 21]!CoefficientList[ Series[(x - 1 + Log[1 - x])/((1 - x)^2(Log[1 - x] - 1)), {x, 0, 21}], x] (* Robert G. Wilson v, Jan 26 2007 *)
  • Maxima
    a(n):=n!*(sum((-1)^(m)*(n-m+1)/(m-1)!*sum(k!*stirling1(m-1,k), k,1,m-1), m,2,n)+1); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    x='x+O('x^30); Vec(serlaplace( (x-1+log(1-x))/((x-1)^2*(log(1-x) -1)))) \\ G. C. Greubel, Sep 05 2018

Formula

E.g.f.: (x-1+log(1-x)) / ( (x-1)^2 (log(1-x)-1) ).
a(n) = n!*(sum((-1)^(m)*(n-m+1)/(m-1)!*sum(k!*Stirling1(m-1,k),k,1,m-1),m,2,n)+1). - Vladimir Kruchinin, Sep 09 2010
a(n) ~ n!*n*(1 - 1/log(n) + gamma/log(n)^2), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 25 2013

Extensions

More terms from N. J. A. Sloane, Jan 26 2007