cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A137231 Amicable triples. Sequence gives sigma values: A125490(n) + A125491(n) + A125492(n).

Original entry on oeis.org

6552, 30240, 70680, 87360, 120960, 120960, 120960, 138240, 157248, 157248, 161280, 196560, 211680, 229320, 241920, 241920, 241920, 241920, 262080, 280800, 290160, 302400, 338688, 362880, 362880, 393120, 393120, 446400, 446400, 483840
Offset: 1

Views

Author

N. J. A. Sloane, Nov 27 2008, at the suggestion of R. K. Guy

Keywords

Comments

Or, apply n -> sigma(n) to any of A125490-A125492.

Crossrefs

Extensions

a(13)-a(30) from Donovan Johnson, Apr 14 2010
Name edited by John Cerkan, Jun 18 2016

A125490 Amicable triples: numbers such that sigma(x) = sigma(y) = sigma(z) = x+y+z, x

Original entry on oeis.org

1980, 9180, 21168, 23940, 37380, 38940, 38940, 39480, 46368, 47124, 53088, 57420, 66720, 67860, 69720, 73320, 75180, 77490, 72072, 86040, 93456, 96660, 92820, 100980, 100980, 112140, 118944, 121800, 139080, 141372
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 11 2006

Keywords

Comments

G. Resta computed these terms.
As stated, we first order by common sigma value. When the common value of sigma is the same for several triples, these are then sorted (ascending) by the smallest member. When the smallest members also agree, we go on to the second smallest members, and so on, lexicographically. - John Cerkan, Jun 18 2016

Examples

			1980 is in the sequence since sigma(1980) = sigma(2016) = sigma(2556) = 6552 = 1980 + 2016 + 2556. - _Michael B. Porter_, Jun 29 2016
		

Crossrefs

Cf. A125491, A125492, A137231 (x+y+z).
Cf. A036471 - A036474 and A116148 (amicable quadruples).
Cf. A233553 for amicable 5-tuples.
Cf. A000203 (sigma function).

Extensions

Definition corrected by N. J. A. Sloane, Nov 27 2008
a(13)-a(30) from Donovan Johnson, Apr 14 2010

A125492 Amicable triples: numbers such that sigma(x) = sigma(y) = sigma(z) = x+y+z, x

Original entry on oeis.org

2556, 11556, 27312, 32136, 42168, 41952, 41412, 54870, 55890, 57834, 54516, 70110, 75540, 83772, 88480, 84348, 84504, 83538, 102258, 100890, 100656, 108324, 138828, 132792, 132396, 143370, 146268, 168150, 162384, 189948
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 11 2006

Keywords

Comments

Giovanni Resta computed the first 12 terms.
As stated, we first order by common sigma value. When the common value of sigma is the same for several triples, these are then sorted (ascending) by the smallest member. When the smallest members also agree, we go on to the second smallest members, and so on, lexicographically. - John Cerkan, Jun 18 2016

Examples

			2556 is in the sequence since sigma(1980) = sigma(2016) = sigma(2556) = 6552 = 1980 + 2016 + 2556. - _Michael B. Porter_, Jun 29 2016
		

Crossrefs

Cf. A125490, A125491, A137231 (x+y+z).
Cf. A000203 (sigma function).

Extensions

a(1)-a(12) from Giovanni Resta
Definition corrected by N. J. A. Sloane, Nov 27 2008
a(13)-a(30) from Donovan Johnson, Apr 14 2010

A384487 Numbers k such that there exist two integers 0

Original entry on oeis.org

396, 504, 600, 756, 840, 924, 1056, 1080, 1140, 1170, 1260, 1320, 1428, 1440, 1488, 1512, 1540, 1560, 1596, 1638, 1650, 1656, 1680, 1704, 1710, 1740, 1800, 1820, 1840, 1848, 1872, 1932, 1980, 2016, 2040, 2100, 2160, 2184, 2232, 2244, 2256, 2280, 2340, 2352, 2380, 2400, 2430, 2436, 2448, 2460, 2484
Offset: 1

Views

Author

S. I. Dimitrov, Jun 01 2025

Keywords

Comments

The numbers i, j and k form a WHM(1)-amicable triple (WHM = weighted harmonic mean). See Dimitrov link.

Examples

			504 is a term because (72, 360, 504) is a triple with 72/sigma(72) + 360/sigma(360) + 504/sigma(504) = 1.
420 is not a term because the corresponding triple is (84, 420, 420).
		

Crossrefs

Programs

  • Maple
    S:= {}: S2:= {}: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      v:= k/numtheory:-sigma(k);
      if member(1-v,S2) then
        R:= R, k; count:= count+1;
     fi;
      S2:= S2 union map(t -> `if`(t+v<1,t+v,NULL),S);
      S:= S union {v};
    od:
    R; # Robert Israel, Jul 01 2025
  • PARI
    isok(k) = for (i=1, k-1, for (j=i+1, k-1, if (i/sigma(i) + j/sigma(j) + k/sigma(k) == 1, /* print([i,j,k]); */ return(1)););); \\ Michel Marcus, Jun 02 2025

Extensions

More terms from Michel Marcus, Jun 02 2025

A386901 Integers y such that there exist two integers 0

Original entry on oeis.org

80850, 158340, 161070, 161700, 232050, 242550, 316680, 322140, 323400, 404250, 464100, 474810, 475020, 483210, 485100, 485940, 565950, 633360, 641550, 644280, 646800, 662340, 696150, 727650, 791700, 805350, 808500, 963270, 966420, 967890, 970200, 971880
Offset: 1

Views

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			158340 is in the sequence since psi(150150) = psi(158340) = psi(175350) = 483840 = 150150 + 158340 + 175350. Other examples: (232050, 232050, 261660), (7091700, 7098630, 7098630).
		

Crossrefs

A233538 Triangle T(n,k) read by rows, which contains for 1<=k<=n the least amicable n-tuple T(n,1),..., T(n,n) such that sigma(T(n,k)) = T(n,1)+...+T(n,n).

Original entry on oeis.org

1, 220, 284, 1980, 2016, 2556, 3270960, 3361680, 3461040, 3834000, 53542288800, 59509850400, 59999219280, 60074174160, 61695597600
Offset: 1

Views

Author

Michel Marcus, M. F. Hasler, Dec 11 2013

Keywords

Comments

Like amicable pairs, amicable n-tuples can be regular or irregular (see Pedersen link). The first amicable pair is regular. Then the first n-tuples are irregular.
For n=3 to 5, the first regular n-tuples are: [230880, 267168, 306336], [6966960, 7054320, 7840560, 8136240], [55766707476480, 56992185169920, 57515254917120, 57754372515840, 57829096765440].
On the other hand, for n>2, a n-tuple can be "very" irregular, that is, when the values of sigma(n-tuple[i]/GCD(n-tuple)) are all different. The first such n-tuples are [21168, 22200, 27312], [3767400, 4090320, 4150440, 4240800].
When n=2, irregular and "very irregular" is the same thing. The first irregular amicable pair is (1184, 1210) (see difference between A002025 and A215491).
Regular n-tuples can be found with the method described in the second Kohmoto link. Then it is eventually possible to derive another n-tuple using the same "seed". For this, it suffices to find an integer g' such that sigma(g')/g' = sigma(g)/g and coprime to the terms of the n-tuple divided by g.
The 6th row is smaller than (379952828833009557565440000, 387198605857900590673920000, 388674597474082097418240000, 388808778530098598031360000, 389307165309588457451520000, 393332596990083475845120000).

Examples

			Triangle begins:
1;
220, 284;                                 i.e. A002025(1), A002046(1).
1980, 2016, 2556;                         i.e. A125490(1), A125491(1), A125492(1).
3270960, 3361680, 3461040, 3834000;
53542288800, 59509850400, 59999219280, 60074174160, 61695597600.
		

Crossrefs

Cf. A233626 (first column).
Cf. A002025, A002046, A161005, (amicable pairs).
Cf. A125490 - A125492, A137231, (amicable triples).
Cf. A036471 - A036474, A116148, (amicable quadruples).
Cf. A233553, A233626 (first row).
Showing 1-6 of 6 results.