A242466 A term in this sequence a(n) is such that n and n+1 have isomorphic factor decomposition binary trees.
2, 9, 14, 21, 25, 33, 34, 38, 57, 85, 86, 93, 94, 116, 118, 121, 122, 133, 141, 142, 145, 158, 170, 171, 177, 201, 202, 205, 213, 214, 217, 218, 253, 284, 298, 301, 302, 326, 332, 334, 361, 369, 381, 387, 393, 394, 434, 435, 445, 446, 453, 481, 501, 514, 526
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Gordon Hamilton, Integral Fission, Video for grade 7 teachers
Crossrefs
Cf. A125508.
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; `if`(n=1, "0", `if`(isprime(n), "10", (d-> cat("1", t(d), t(n/d), "0"))( max(select(x-> is(x<=sqrt(n)), divisors(n))[])))) end: a:= proc(n) option remember; local k; for k from 1 +`if`(n=1, 0, a(n-1)) while t(k)<>t(k+1) do od; k end: seq(a(n), n=1..60); # Alois P. Heinz, Aug 09 2014
-
Mathematica
t[n_] := t[n] = If[n == 1, "0", If[PrimeQ[n], "10", ("1" <> t[#] <> t[n/#] <> "0"&)[Max[Select[Divisors[n], # <= Sqrt[n]&]]]]]; a[n_] := a[n] = (For[k = 1 + If[n == 1, 0, a[n-1]], t[k] != t[k+1], k++]; k); Array[a, 60] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)
-
PARI
isok(n) = eqvec(empty(fiss(n)), empty(fiss(n+1))); \\ using A125508 scripts; Michel Marcus, May 25 2014
Extensions
More terms from Michel Marcus, May 25 2014
Comments