A125598 a(n) = ((n+1)^(n-1) - 1)/n.
0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..350
Crossrefs
Programs
-
Magma
[((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
-
Mathematica
Table[((n+1)^(n-1)-1)/n, {n,25}]
-
Sage
[gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
Formula
a(n) = ((n+1)^(n-1) - 1)/n.
a(n) = (A000272(n+1) - 1)/n.
a(2k-1)/(2k+1) = A125599(k) for k>0.
From Mathew Englander, Dec 17 2020: (Start)
For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k.
For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End)
Comments