cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125611 a(n) is the smallest prime p such that 7^n divides p^6 - 1.

Original entry on oeis.org

2, 19, 19, 3449, 32261, 152617, 3294173, 3376853, 135967277, 135967277, 7909306973, 92233439147, 115385868869, 1356446145697, 56020344873707, 56020344873707, 930522055948829, 9116268492336169, 10744682090246617
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Comments

a(n) is the smallest 6th root of unity (mod 7^n) that is prime. - Robert Israel, Jan 14 2024

Crossrefs

Programs

  • Maple
    f:= proc(n) local R, r, i;
      R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)]));
      for i from 0 do
        for r in R do
          if isprime(7^n * i + r) then return 7^n * i + r fi
      od od;
    end proc:
    map(f, [$1..30]); # Robert Israel, Jan 14 2024
  • PARI
    \\ See A125609
    
  • Python
    from itertools import count
    from sympy import nthroot_mod, isprime
    def A125611(n):
        m = 7**n
        r = sorted(nthroot_mod(1,6,m,all_roots=True))
        for i in count(0,m):
            for p in r:
                if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024

Extensions

More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007