A125611 a(n) is the smallest prime p such that 7^n divides p^6 - 1.
2, 19, 19, 3449, 32261, 152617, 3294173, 3376853, 135967277, 135967277, 7909306973, 92233439147, 115385868869, 1356446145697, 56020344873707, 56020344873707, 930522055948829, 9116268492336169, 10744682090246617
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Wilfrid Keller and Jörg Richstein, Fermat quotients that are divisible by p, 2014. [Wayback Machine link]
Programs
-
Maple
f:= proc(n) local R, r, i; R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)])); for i from 0 do for r in R do if isprime(7^n * i + r) then return 7^n * i + r fi od od; end proc: map(f, [$1..30]); # Robert Israel, Jan 14 2024
-
PARI
\\ See A125609
-
Python
from itertools import count from sympy import nthroot_mod, isprime def A125611(n): m = 7**n r = sorted(nthroot_mod(1,6,m,all_roots=True)) for i in count(0,m): for p in r: if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024
Extensions
More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007
Comments