A369154 Numbers k such that A125611(k) = A125611(k + 1).
2, 9, 15, 28, 40, 41, 42, 48, 60, 68, 79, 83, 93, 95, 98, 100, 108, 114, 118, 120, 124, 129, 132, 137, 147, 149, 167, 196, 202, 206, 207, 215, 219, 221, 223, 225, 230, 243, 248, 255, 261, 265, 274, 276, 287, 299, 302, 320, 323, 329, 337, 341, 353, 356, 360, 364, 365, 373, 380, 381, 391, 405, 410
Offset: 1
Keywords
Examples
a(3) = 15 is a term because A125611(15) = A125611(16) = 56020344873707, i.e., 56020344873707 is the least prime p such that p^6 - 1 is divisible by 7^15, and in this case p^6 - 1 is also divisible by 7^16.
Links
- Robert Israel, Table of n, a(n) for n = 1..430
Crossrefs
Cf. A125611.
Programs
-
Maple
f:= proc(n) local R,r,i; R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)])); for i from 0 do for r in R do if isprime(7^n * i + r) then return 7^n * i + r fi od od; end proc: R:= NULL: count:= 0: for k from 1 while count < 100 do v:= f(k); if v = w then R:= R, k-1; count:= count+1 fi; w:= v; od: R;
-
Python
from itertools import count, islice from sympy import nthroot_mod, isprime def A369154_gen(): # generator of terms c, m = 1, 1 for k in count(0): m *= 7 r = sorted(nthroot_mod(1,6,m,all_roots=True)) for i in count(0,m): for p in r: if isprime(i+p): if i+p == c: yield k c = i+p break else: continue break A369154_list = list(islice(A369154_gen(),30)) # Chai Wah Wu, May 04 2024
Comments