cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A125611 a(n) is the smallest prime p such that 7^n divides p^6 - 1.

Original entry on oeis.org

2, 19, 19, 3449, 32261, 152617, 3294173, 3376853, 135967277, 135967277, 7909306973, 92233439147, 115385868869, 1356446145697, 56020344873707, 56020344873707, 930522055948829, 9116268492336169, 10744682090246617
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Comments

a(n) is the smallest 6th root of unity (mod 7^n) that is prime. - Robert Israel, Jan 14 2024

Crossrefs

Programs

  • Maple
    f:= proc(n) local R, r, i;
      R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)]));
      for i from 0 do
        for r in R do
          if isprime(7^n * i + r) then return 7^n * i + r fi
      od od;
    end proc:
    map(f, [$1..30]); # Robert Israel, Jan 14 2024
  • PARI
    \\ See A125609
    
  • Python
    from itertools import count
    from sympy import nthroot_mod, isprime
    def A125611(n):
        m = 7**n
        r = sorted(nthroot_mod(1,6,m,all_roots=True))
        for i in count(0,m):
            for p in r:
                if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024

Extensions

More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007

A125609 Smallest prime p such that 3^n divides p^2 - 1.

Original entry on oeis.org

2, 17, 53, 163, 487, 1459, 4373, 13121, 39367, 472391, 1062881, 1062881, 19131877, 19131877, 57395627, 86093443, 258280327, 3874204891, 6973568801, 6973568801, 188286357653, 188286357653, 188286357653, 4518872583697, 15251194969973
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Comments

Smallest prime of the form k*3^n-1 or k*3^n+1. - Robert Israel, Oct 27 2019

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

  • Maple
    f:= proc(n) local k;
          for k from 1 do
            if isprime(k*3^n-1) then return k*3^n-1
            elif isprime(k*3^n+1) then return k*3^n+1
            fi
          od
    end proc:
    map(f, [$1..30]); # Robert Israel, Oct 27 2019
  • Mathematica
    f[n_] := Module[{k}, For[k = 1, True, k++, If[PrimeQ[k*3^n-1], Return[k*3^n-1], If[PrimeQ[k*3^n+1], Return[k*3^n+1]]]]];
    Array[f, 30] (* Jean-François Alcover, Jun 04 2020, after Maple *)
  • PARI
    \\ See link.

Extensions

Corrected and extended by Ryan Propper, Jan 01 2007
More terms from Martin Fuller, Jan 11 2007

A125610 Smallest prime p such that 5^n divides p^4 - 1.

Original entry on oeis.org

2, 7, 193, 443, 14557, 14557, 735443, 3124999, 7812499, 78124999, 292968749, 853235443, 2441406251, 53834264557, 122070312499, 202513391693, 1118040735443, 3459595983307, 3459595983307, 270488404577057
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

  • Maple
    f:= proc(n) local k, p2,P,t;
        p2:= numtheory:-msqrt(-1,5^n);
        P:= sort([1,p2,5^n-p2,5^n-1]);
        for k from 0 do
          for t in P do
            if isprime(k*5^n+t) then return k*5^n+t fi
        od od:
    end proc:
    map(f, [$1..30]); # Robert Israel, Oct 27 2019
  • PARI
    \\ See A125609 - Martin Fuller, Jan 11 2007

Extensions

More terms from Ryan Propper, Jan 02 2007
More terms from Martin Fuller, Jan 11 2007

A125632 Smallest prime p such that 13^n divides p^12 - 1.

Original entry on oeis.org

2, 19, 239, 239, 220861, 7654109, 533810141, 533810141, 822557039, 38050596989, 2395794301259, 58713568184837, 358661570404751, 22771419458231473, 65106791321062951, 1951482088631313647, 13942901952235522979
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

Extensions

More terms from Martin Fuller, Jan 11 2007

A125633 Smallest prime p such that 17^n divides p^16 - 1.

Original entry on oeis.org

2, 131, 653, 15541, 15541, 24527681, 38277341, 16048035481, 48718117843, 5498076927457, 38413406256881, 2359162908109223, 44510586506850631, 346100334752156863, 12132548193910221893, 201533461539194779193
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

Extensions

More terms from Martin Fuller, Jan 11 2007

A125634 Smallest prime p such that 19^n divides p^18 - 1.

Original entry on oeis.org

2, 127, 2819, 2819, 2342959, 2342959, 47579927, 3620189879, 513127081109, 8388044818849, 77460384757423, 2649283656602003, 252317900773542353, 2467410166021233673, 50407811312994280933, 179869204428830533411
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

Extensions

More terms from Martin Fuller, Jan 11 2007

A125635 Smallest prime p such that 257^n divides p^256 - 1.

Original entry on oeis.org

2, 1993, 134857, 716192579, 68539500613, 101479854517477, 711236716682257, 1646895113182602793, 783453821802171722617, 91545091731109499684503, 5225628509593228805996529, 1808125915932987167909775139
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.

Programs

Extensions

More terms from Martin Fuller, Jan 11 2007

A125636 Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

5, 17, 7, 19, 3, 19, 131, 127, 263, 41, 229, 691, 313, 19, 53, 521, 53, 601, 1301, 11, 619, 31, 269, 3187, 53, 181, 43, 317, 499, 373, 911, 659, 19, 3659, 313, 751, 233, 4373, 3307, 419, 2591, 313, 1249, 2897, 349, 709, 331, 1973, 1933, 503, 821, 977, 2371, 263
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125637 (analogous with p^3 instead of p^2).
Cf. A125609 (q=3), A125610 (q=5), A125611 (q=7), A125612 (q=11), A125632 (q=13), A125633 (q=17), A125634 (q=19): sequences of smallest prime p such that q^n divides p^(q-1) - 1.

Programs

  • Maple
    a:= proc(p)
      local q;
      q:= 3;
      while (q &^ (p-1) - 1) mod p^2 <> 0 do
        q:= nextprime(q)
      od:
      q
    end proc:
    seq(a(ithprime(n)), n=1..100); # Robert Israel, Nov 24 2014
  • Mathematica
    Table[Function[p, q = 3; While[! Divisible[q^(p - 1) - 1, p^2], q = NextPrime@ q]; q]@ Prime@ n, {n, 54}] (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    a(n) = {p = prime(n); forprime(q=3, , if (Mod(q, p^2)^(p-1) == 1, return (q)););} \\ Michel Marcus, Nov 24 2014

Extensions

Removed an incorrect comment. - Felix Fröhlich, Feb 12 2017

A125637 Smallest odd prime base q such that p^3 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

17, 53, 193, 19, 2663, 239, 653, 2819, 13931, 10133, 6287, 691, 10399, 3623, 6397, 9283, 63463, 38447, 36809, 21499, 75227, 1523, 55933, 42937, 341293, 4943, 255007, 5573, 56633, 262079, 94961, 33289, 65543, 298157, 218579, 25667, 411589, 253987
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125636 = Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = Prime[n]. Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.

A125645 Smallest odd prime base q such that p^4 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

17, 163, 443, 3449, 45989, 239, 15541, 2819, 60793, 78017, 690143, 398023, 1977343, 574081, 1513367, 4388179, 3198427, 8065789, 3246107, 1353383, 5934307, 15631613, 2864371, 14754769, 15012733, 1358891, 32414783, 119551, 21860063, 11281097
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p, r, S,i,s,t;
      uses numtheory;
      p:= ithprime(n);
      r:= primroot(p^4);
      S:= sort([seq(r &^ (i*p^3) mod p^4, i=0..p-2)]);
      for i from 0 do
        for s in S do
          t:= i*p^4+s;
          if t::odd and isprime(t) then return t fi
      od od
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Feb 12 2017
  • PARI
    { a(n) = local(p,x,y); if(n==1,return(17)); p=prime(n); x=znprimroot(p^4)^(p^3); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^4);y ) )[1] } \\ Max Alekseyev, May 30 2007

Extensions

More terms from Max Alekseyev, May 30 2007
Showing 1-10 of 21 results. Next