cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A125637 Smallest odd prime base q such that p^3 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

17, 53, 193, 19, 2663, 239, 653, 2819, 13931, 10133, 6287, 691, 10399, 3623, 6397, 9283, 63463, 38447, 36809, 21499, 75227, 1523, 55933, 42937, 341293, 4943, 255007, 5573, 56633, 262079, 94961, 33289, 65543, 298157, 218579, 25667, 411589, 253987
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125636 = Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = Prime[n]. Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.

A125645 Smallest odd prime base q such that p^4 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

17, 163, 443, 3449, 45989, 239, 15541, 2819, 60793, 78017, 690143, 398023, 1977343, 574081, 1513367, 4388179, 3198427, 8065789, 3246107, 1353383, 5934307, 15631613, 2864371, 14754769, 15012733, 1358891, 32414783, 119551, 21860063, 11281097
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p, r, S,i,s,t;
      uses numtheory;
      p:= ithprime(n);
      r:= primroot(p^4);
      S:= sort([seq(r &^ (i*p^3) mod p^4, i=0..p-2)]);
      for i from 0 do
        for s in S do
          t:= i*p^4+s;
          if t::odd and isprime(t) then return t fi
      od od
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Feb 12 2017
  • PARI
    { a(n) = local(p,x,y); if(n==1,return(17)); p=prime(n); x=znprimroot(p^4)^(p^3); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^4);y ) )[1] } \\ Max Alekseyev, May 30 2007

Extensions

More terms from Max Alekseyev, May 30 2007

A125646 Smallest odd prime base q such that p^5 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

97, 487, 14557, 32261, 275393, 220861, 15541, 2342959, 1051847, 24639193, 40373093, 70697317, 31851901, 47289133, 456330179, 10000453, 154075723, 130702609, 304154189, 143584109, 183298237, 79451167, 1058782027, 352845203, 567620413, 4592184511, 5890772963, 9651540247, 4081988041, 4772484029
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,k,j,q,R;
      p:= ithprime(n);
      R:= sort(map(rhs@op, [msolve(q^(p-1)-1, p^5)]));
      for k from 0 do
        for j in R do
          q:= k*p^5+j;
          if isprime(q) then return q fi;
        od
     od
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 11 2019
  • Mathematica
    Do[p = Prime[n]; q = 2; While[PowerMod[q, p-1, p^5] != 1, q = NextPrime[q]]; Print[q], {n, 100}] (* Ryan Propper, Mar 31 2007 *)
  • PARI
    { a(n) = local(p,x,y); if(n==1,return(97)); p=prime(n); x=znprimroot(p^5)^(p^4); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^5);y ) )[1] } \\ Max Alekseyev, May 30 2007
    
  • Python
    from itertools import count
    from sympy import nthroot_mod, isprime, prime
    def A125646(n):
        m = (p:=prime(n))**5
        r = sorted(nthroot_mod(1,p-1,m,all_roots=True))
        for i in count(0,m):
            for a in r:
                if isprime(i+a): return i+a # Chai Wah Wu, May 02 2024

Extensions

More terms from Ryan Propper, Mar 31 2007
More terms from Max Alekseyev, May 30 2007

A125648 Smallest odd prime base q such that p^7 divides q^(p-1) - 1, where p = Prime[n].

Original entry on oeis.org

257, 4373, 735443, 3294173, 28723679, 533810141, 38277341, 47579927, 982740799, 33956348611, 77141582851, 174329354539, 82984891817, 109051450427, 83209719751, 1352085061013, 171168499897, 1822904926391, 2870322429133, 3589197993463, 2603594622571, 5834621843669, 1411025860033, 20635686238253, 1580041060459, 26763849212297, 8216934406781, 28482190726739, 97876187600351
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • PARI
    { a125648(n) = my(p, x, r); if(n==1, return(257)); p=prime(n); x=znprimroot(p^7)^(p^6); vecmin( vector(p-1, i, forprimestep(y=2,oo,x^i,r=y;break); r) ); } \\ Max Alekseyev, May 30 2007; updated Apr 01 2025

Extensions

More terms from Max Alekseyev, May 30 2007

A125647 Smallest odd prime base q such that p^6 divides q^(p-1) - 1, where p = Prime[n].

Original entry on oeis.org

193, 1459, 14557, 152617, 2120879, 7654109, 24527681, 2342959, 90603883, 1657641497, 40373093, 2175429661, 1614357949, 119612113, 14635471219, 2816276179, 15591204869, 1006953931, 7726467079, 48931161299, 54908441659, 41985419521, 583493688221, 200335697059, 96891225583, 50303508131, 129847013561, 362253784469, 625810253147, 195406393583
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = local(p,x,y); if(n==1,return(193)); p=prime(n); x=znprimroot(p^6)^(p^5); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^6);y ) )[1] } \\ Max Alekseyev, May 30 2007

Extensions

More terms from Max Alekseyev, May 30 2007

A125649 Smallest odd prime base q such that p^8 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

257, 13121, 3124999, 3376853, 174625993, 533810141, 16048035481, 3620189879, 982740799, 547344139109, 497929938133, 1105109875657, 15682480615619, 1391016035411, 83209719751, 84224951222611, 165554755409789, 254747341131683, 701000310909907, 317304132615017
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; q = 2; While[PowerMod[q, p-1, p^8] != 1, q = NextPrime[q]]; Print[q], {n, 100}] (* Ryan Propper, Apr 01 2007 *)
  • PARI
    { a(n) = local(p,x,y); if(n==1,return(257)); p=prime(n); x=znprimroot(p^8)^(p^7); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^8);y ) )[1] } \\ Max Alekseyev, May 30 2007

Extensions

More terms from Ryan Propper, Apr 01 2007
More terms from Max Alekseyev, May 30 2007

A174422 1st Wieferich prime base prime(n).

Original entry on oeis.org

1093, 11, 2, 5, 71, 2, 2, 3, 13, 2, 7, 2, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Mar 19 2010

Keywords

Comments

Smallest prime p such that p^2 divides prime(n)^(p-1) - 1.
Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p.
See additional comments, links, and cross-refs in A039951.
a(15) = A039951(47) > 4.1*10^13.

Examples

			a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127.
		

Crossrefs

Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1.
Cf. A178871 = 2nd Wieferich prime base prime(n).

Programs

  • Mathematica
    f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14]
  • PARI
    forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jun 27 2014

Formula

a(n) = A039951(prime(n)).
a(n) = 2 if and only if prime(n) == 1 (mod 4). [Jonathan Sondow, Aug 29 2010]

A133859 Smallest odd prime base q such that p^9 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

7681, 39367, 7812499, 135967277, 4715895383, 822557039, 48718117843, 513127081109, 147534349327, 21203414421907, 52879244321341, 15069267560119, 798099274499279, 164129642266943, 1740228634955257, 149381307185023
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(9) = 7681.
a(2) = A125609(9) = 39367.
a(3) = A125610(9) = 7812499.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^9 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133860 Smallest odd prime base q such that p^10 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 472391, 78124999, 135967277, 24262286441, 38050596989, 5498076927457, 8388044818849, 30794280412669, 45941644105613, 1205285836084793, 7909086479714171, 1438991183761177, 47101607991825047, 18067554193458689
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(10) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^10 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133861 Smallest odd prime base q such that p^11 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 1062881, 292968749, 7909306973, 1194631280321, 2395794301259, 38413406256881, 77460384757423, 30794280412669, 4161130688896397, 3748333074529501, 240404931594746129, 191828075390557213
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(11) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^11 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009
Showing 1-10 of 18 results. Next