cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125612 a(n) is the smallest prime p such that 11^n divides p^10 - 1.

Original entry on oeis.org

2, 3, 2663, 45989, 275393, 2120879, 28723679, 174625993, 4715895383, 24262286441, 1194631280321, 3143820659087, 138090848575723, 488581592070877, 6266190914259137, 367597838908577287, 10866698414795559631, 19697814061539637951, 19697814061539637951, 3824465353837845574717, 14852046860008834240157
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Comments

a(n) is the smallest 10th root of unity (mod 11^n) that is prime. - Robert Israel, Jan 14 2024

Crossrefs

Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.

Programs

  • Maple
    f:= proc(n) local R,r,i;
      R:= sort(map(rhs@op, [msolve(x^10=1, 11^n)]));
      for i from 0 do
        for r in R do
          if isprime(11^n * i + r) then return 11^n * i + r fi
      od od;
    end proc:
    map(f, [$1..20]); # Robert Israel, Jan 14 2024
  • Mathematica
    spp[n_]:=Module[{p=2,c=11^n},While[PowerMod[p,10,c]!=1,p=NextPrime[p]];p]; Array[spp,16] (* Harvey P. Dale, Aug 08 2019 *)
  • PARI
    \\ See A125609
    
  • Python
    from itertools import count
    from sympy import nthroot_mod, isprime
    def A125612(n):
        m = 11**n
        r = sorted(nthroot_mod(1,10,m,all_roots=True))
        for i in count(0,m):
            for p in r:
                if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024

Extensions

More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007
More terms from Robert Israel, Jan 14 2024