A125612 a(n) is the smallest prime p such that 11^n divides p^10 - 1.
2, 3, 2663, 45989, 275393, 2120879, 28723679, 174625993, 4715895383, 24262286441, 1194631280321, 3143820659087, 138090848575723, 488581592070877, 6266190914259137, 367597838908577287, 10866698414795559631, 19697814061539637951, 19697814061539637951, 3824465353837845574717, 14852046860008834240157
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..954
- W. Keller and J. Richstein, Fermat quotients that are divisible by p.
Crossrefs
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
Programs
-
Maple
f:= proc(n) local R,r,i; R:= sort(map(rhs@op, [msolve(x^10=1, 11^n)])); for i from 0 do for r in R do if isprime(11^n * i + r) then return 11^n * i + r fi od od; end proc: map(f, [$1..20]); # Robert Israel, Jan 14 2024
-
Mathematica
spp[n_]:=Module[{p=2,c=11^n},While[PowerMod[p,10,c]!=1,p=NextPrime[p]];p]; Array[spp,16] (* Harvey P. Dale, Aug 08 2019 *)
-
PARI
\\ See A125609
-
Python
from itertools import count from sympy import nthroot_mod, isprime def A125612(n): m = 11**n r = sorted(nthroot_mod(1,10,m,all_roots=True)) for i in count(0,m): for p in r: if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024
Extensions
More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007
More terms from Robert Israel, Jan 14 2024
Comments