cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125646 Smallest odd prime base q such that p^5 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

97, 487, 14557, 32261, 275393, 220861, 15541, 2342959, 1051847, 24639193, 40373093, 70697317, 31851901, 47289133, 456330179, 10000453, 154075723, 130702609, 304154189, 143584109, 183298237, 79451167, 1058782027, 352845203, 567620413, 4592184511, 5890772963, 9651540247, 4081988041, 4772484029
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,k,j,q,R;
      p:= ithprime(n);
      R:= sort(map(rhs@op, [msolve(q^(p-1)-1, p^5)]));
      for k from 0 do
        for j in R do
          q:= k*p^5+j;
          if isprime(q) then return q fi;
        od
     od
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 11 2019
  • Mathematica
    Do[p = Prime[n]; q = 2; While[PowerMod[q, p-1, p^5] != 1, q = NextPrime[q]]; Print[q], {n, 100}] (* Ryan Propper, Mar 31 2007 *)
  • PARI
    { a(n) = local(p,x,y); if(n==1,return(97)); p=prime(n); x=znprimroot(p^5)^(p^4); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^5);y ) )[1] } \\ Max Alekseyev, May 30 2007
    
  • Python
    from itertools import count
    from sympy import nthroot_mod, isprime, prime
    def A125646(n):
        m = (p:=prime(n))**5
        r = sorted(nthroot_mod(1,p-1,m,all_roots=True))
        for i in count(0,m):
            for a in r:
                if isprime(i+a): return i+a # Chai Wah Wu, May 02 2024

Extensions

More terms from Ryan Propper, Mar 31 2007
More terms from Max Alekseyev, May 30 2007