A125646 Smallest odd prime base q such that p^5 divides q^(p-1) - 1, where p = prime(n).
97, 487, 14557, 32261, 275393, 220861, 15541, 2342959, 1051847, 24639193, 40373093, 70697317, 31851901, 47289133, 456330179, 10000453, 154075723, 130702609, 304154189, 143584109, 183298237, 79451167, 1058782027, 352845203, 567620413, 4592184511, 5890772963, 9651540247, 4081988041, 4772484029
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..500
- W. Keller and J. Richstein, Fermat quotients that are divisible by p.
Crossrefs
Programs
-
Maple
f:= proc(n) local p,k,j,q,R; p:= ithprime(n); R:= sort(map(rhs@op, [msolve(q^(p-1)-1, p^5)])); for k from 0 do for j in R do q:= k*p^5+j; if isprime(q) then return q fi; od od end proc: map(f, [$1..100]); # Robert Israel, Apr 11 2019
-
Mathematica
Do[p = Prime[n]; q = 2; While[PowerMod[q, p-1, p^5] != 1, q = NextPrime[q]]; Print[q], {n, 100}] (* Ryan Propper, Mar 31 2007 *)
-
PARI
{ a(n) = local(p,x,y); if(n==1,return(97)); p=prime(n); x=znprimroot(p^5)^(p^4); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^5);y ) )[1] } \\ Max Alekseyev, May 30 2007
-
Python
from itertools import count from sympy import nthroot_mod, isprime, prime def A125646(n): m = (p:=prime(n))**5 r = sorted(nthroot_mod(1,p-1,m,all_roots=True)) for i in count(0,m): for a in r: if isprime(i+a): return i+a # Chai Wah Wu, May 02 2024
Extensions
More terms from Ryan Propper, Mar 31 2007
More terms from Max Alekseyev, May 30 2007