A125687 The base 6 numbers 4 44 444 4444 44444 ... converted to base 10.
4, 28, 172, 1036, 6220, 37324, 223948, 1343692, 8062156, 48372940, 290237644, 1741425868, 10448555212, 62691331276, 376147987660, 2256887925964, 13541327555788, 81247965334732, 487487792008396, 2924926752050380, 17549560512302284, 105297363073813708, 631784178442882252
Offset: 1
Examples
Base 6.........decimal 4....................4 44..................28 444................172 4444..............1036 44444.............6220 444444...........37324 4444444.........223948 44444444.......1343692 444444444......8062156 4444444444....48372940 etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-6).
Crossrefs
Cf. A003464.
Programs
-
Magma
[(6^n-1)*4/5: n in [1.. 35]]; // Vincenzo Librandi, Sep 26 2015
-
Maple
seq((6^n-1)*4/5, n=1..24);
-
Mathematica
4 (6^Range[20]-1)/5 (* Harvey P. Dale, Mar 12 2011 *) Rest[CoefficientList[Series[4 x/((1 - x) (1 - 6 x)), {x, 0, 30}], x]] (* Vincenzo Librandi, Sep 26 2015 *) Table[FromDigits[PadRight[{},n,4],6],{n,30}] (* or *) LinearRecurrence[{7,-6},{4,28},30] (* Harvey P. Dale, Jan 02 2023 *)
Formula
a(n) = 4*(6^n - 1)/5.
G.f.: 4*x/((1-x)*(1-6*x)). - Vincenzo Librandi, Sep 26 2015
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: 4*exp(x)*(exp(5*x) - 1)/5.
a(n) = 4*A003464(n).
a(n) = 7*a(n-1) - 6*a(n-2) for n > 2. (End)
Extensions
Edited by N. J. A. Sloane, Feb 02 2007
More terms from Vincenzo Librandi, Sep 26 2015