cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125689 a(n) is the smallest number having exactly n partitions into three distinct primes.

Original entry on oeis.org

1, 10, 18, 26, 31, 35, 39, 80, 49, 47, 57, 53, 63, 59, 65, 67, 248, 73, 71, 79, 85, 77, 93, 105, 332, 83, 89, 111, 97, 482, 95, 103, 101, 674, 135, 129, 115, 107, 800, 113, 1040, 121, 1010, 119, 127, 125, 153, 159, 133, 1136, 145, 131, 171, 1304, 137, 151, 1520
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2006

Keywords

Comments

A125688(a(n)) = n and A125688(m) <> n for m < a(n).

Crossrefs

Cf. A125688.

Programs

  • Mathematica
    nmax = 300; kmax = 10000; c = ConstantArray[Null, nmax];
    For[k = 1, k <= kmax, k++,
      l = Length@Select[IntegerPartitions[k, {3}, Prime@Range@kmax], #[[1]] > #[[2]] > #[[3]] &];
      If[l <= nmax && c[[l]] == Null, c[[l]] = k];
    ];
    Prepend[c[[1 ;; First@FirstPosition[c, Null] - 1]], 1] (* Robert Price, Apr 25 2025 *)
  • PARI
    \\ here b(n) is A125688.
    b(n, brk=oo)={my(s=0); forprime(p=2, n\3, if((n-p)%2==0, forprime(q=p+1, (n-p)/2-1, if(isprime(n-p-q), s++; if(s>=brk, return(-1))) ))); s}
    sols(n, lim, f)={my(u=vector(n), r=n); for(i=1, lim, my(t=f(i)); if(t>0 && t<=#u && !u[t], u[t]=i; r--; if(r==0, return(u)))); my(m=1); while(m<=#u && u[m], m++); u[1..m-1]}
    { my(nn=100); nn++; sols(nn, 10^4, i->b(i, nn)+1) } \\ Andrew Howroyd, Jan 06 2020

Extensions

Terms a(40) and beyond from Andrew Howroyd, Jan 06 2020