cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125779 Numbers n such that n^4 + 1, n^4 + 3, n^4 + 7 and n^4 + 9 are all prime.

Original entry on oeis.org

83270, 519370, 939220, 1844170, 2263910, 2293460, 2429260, 2595980, 3133640, 3216530, 3474200, 3559760, 4787050, 5306720, 5505940, 6238780, 6889430, 6932770, 7320160, 8286340, 8427880, 8744290, 8961590, 9863440, 10871530
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2006

Keywords

Comments

Schinzel proved in 1958 that the set of primes of kind n^(2^k) + 1, n^(2^k) + 3, n^(2^k) + 7 and n^(2^k) + 9 is infinite for each number k > 0.

References

  • Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for k from 0 while count < 30 do
      for i in [20,30,40,50] do
        n:= 70*k + i;
        if isprime(n^4+1) and isprime(n^4+3) and isprime(n^4+7) and isprime(n^4+9) then
          count:= count+1; R:= R, n;
        fi
    od od:
    R; # Robert Israel, Feb 11 2021
  • Mathematica
    Select[Range[109*10^5],AllTrue[#^4+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, May 15 2022 *)

Extensions

Corrected and extended by Donovan Johnson, Apr 22 2008