A125791 a(n) = 2^(n*(n-1)*(n-2)/6) for n>=1.
1, 1, 2, 16, 1024, 1048576, 34359738368, 72057594037927936, 19342813113834066795298816, 1329227995784915872903807060280344576, 46768052394588893382517914646921056628989841375232
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..28
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
Programs
-
Maple
seq(2^(binomial(n, n-3)), n=1..10); # Zerinvary Lajos, Jun 16 2007 [modified by Georg Fischer, Nov 09 2023]
-
Mathematica
A125791[n_]:=2^Binomial[n,n-3];Array[A125791,15] (* Paolo Xausa, Nov 05 2023 *)
-
PARI
a(n)=if(n<1,0,2^(n*(n-1)*(n-2)/6))
-
PARI
/* As determinant of n X n matrix: */ {a(n)=local(q=2,A=Mat(1), B); for(m=1, n, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(matdet(matrix(n,n,r,c,(A^c)[r,1])))} for(n=1,15,print1(a(n),", "))
-
Prolog
% This generates all 3SAT problem instances test:-test(4). test(Max):- between(1,Max,N), nl, one_in_three_monotone_3sat(N,Pss), write(N:Pss),nl, fail ; nl. % generates all one-in-three monotone 3SAT problems involving N variables one_in_three_monotone_3sat(N,Pss):- ints(1,N,Is), findall(Xs,ksubset(3,Is,Xs),Xss), subset_of(Xss,Pss). % subset generator subset_of([],[]). subset_of([X|Xs],Zs):- subset_of(Xs,Ys), add_element(X,Ys,Zs). add_element(_,Ys,Ys). add_element(X,Ys,[X|Ys]). % subsets of K elements ksubset(0,_,[]). ksubset(K,[X|Xs],[X|Rs]):-K>0,K1 is K-1,ksubset(K1,Xs,Rs). ksubset(K,[_|Xs],Rs):-K>0,ksubset(K,Xs,Rs). % list of integers in [From..To] ints(From,To,Is):-findall(I,between(From,To,I),Is). % Paul Tarau (paul.tarau(AT)gmail.com), Jan 25 2008
Formula
Determinant of n X n upper left corner submatrix of table A125790.
a(n) = 2^(binomial(n,n-3)). - Zerinvary Lajos, Jun 16 2007, modified to reflect the new offset by Paolo Xausa, Nov 06 2023.
Extensions
Name simplified; determinant formula moved out of name into formula section by Paul D. Hanna, Oct 16 2013
Offset changed to 1 by Paolo Xausa, Nov 06 2023
Comments