cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125791 a(n) = 2^(n*(n-1)*(n-2)/6) for n>=1.

Original entry on oeis.org

1, 1, 2, 16, 1024, 1048576, 34359738368, 72057594037927936, 19342813113834066795298816, 1329227995784915872903807060280344576, 46768052394588893382517914646921056628989841375232
Offset: 1

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Comments

a(n) is a tetrahedral power of 2; exponents of 2 in a(n) begin: 0, 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ..., n*(n-1)*(n-2)/6, ... (cf. A000292).
Table A125790 is related to partitions into powers of 2, with A002577 in column 1 of A125790; further, column k of A125790 equals row sums of matrix power A078121^k, where triangle A078121 shifts left one column under matrix square.
Also number of distinct instances of the one-in-three monotone 3SAT problem for n variables. - Paul Tarau (paul.tarau(AT)gmail.com), Jan 25 2008
Hankel transform of aerated 2-Catalan numbers (A015083). [Paul Barry, Dec 15 2010]

Crossrefs

Programs

  • Maple
    seq(2^(binomial(n, n-3)), n=1..10); # Zerinvary Lajos, Jun 16 2007 [modified by Georg Fischer, Nov 09 2023]
  • Mathematica
    A125791[n_]:=2^Binomial[n,n-3];Array[A125791,15] (* Paolo Xausa, Nov 05 2023 *)
  • PARI
    a(n)=if(n<1,0,2^(n*(n-1)*(n-2)/6))
    
  • PARI
    /* As determinant of n X n matrix: */
    {a(n)=local(q=2,A=Mat(1), B); for(m=1, n, B=matrix(m, m);
    for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B);
    return(matdet(matrix(n,n,r,c,(A^c)[r,1])))}
    for(n=1,15,print1(a(n),", "))
    
  • Prolog
    % This generates all 3SAT problem instances
    test:-test(4).
    test(Max):-
    between(1,Max,N),
    nl,
    one_in_three_monotone_3sat(N,Pss),
    write(N:Pss),nl,
    fail
    ; nl.
    % generates all one-in-three monotone 3SAT problems involving N variables
    one_in_three_monotone_3sat(N,Pss):-
    ints(1,N,Is),
    findall(Xs,ksubset(3,Is,Xs),Xss),
    subset_of(Xss,Pss).
    % subset generator
    subset_of([],[]).
    subset_of([X|Xs],Zs):-
    subset_of(Xs,Ys),
    add_element(X,Ys,Zs).
    add_element(_,Ys,Ys).
    add_element(X,Ys,[X|Ys]).
    % subsets of K elements
    ksubset(0,_,[]).
    ksubset(K,[X|Xs],[X|Rs]):-K>0,K1 is K-1,ksubset(K1,Xs,Rs).
    ksubset(K,[_|Xs],Rs):-K>0,ksubset(K,Xs,Rs).
    % list of integers in [From..To]
    ints(From,To,Is):-findall(I,between(From,To,I),Is).
    % Paul Tarau (paul.tarau(AT)gmail.com), Jan 25 2008

Formula

Determinant of n X n upper left corner submatrix of table A125790.
a(n) = 2^(binomial(n,n-3)). - Zerinvary Lajos, Jun 16 2007, modified to reflect the new offset by Paolo Xausa, Nov 06 2023.

Extensions

Name simplified; determinant formula moved out of name into formula section by Paul D. Hanna, Oct 16 2013
Offset changed to 1 by Paolo Xausa, Nov 06 2023