cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015083 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=2.

Original entry on oeis.org

1, 1, 3, 17, 171, 3113, 106419, 7035649, 915028347, 236101213721, 121358941877763, 124515003203007345, 255256125633703622475, 1046039978882750301409545, 8571252355254982356001107795, 140448544236464264647066322058465, 4602498820363674769217316088142020635
Offset: 0

Views

Author

Keywords

Comments

Limit_{n->inf} a(n)/2^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/2^k) = 3.462746619455... (cf. A065446). - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 2^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of aerated sequence is A125791. - Paul Barry, Dec 15 2010

Examples

			G.f. = 1 + x + 3*x^2 + 17*x^3 + 171*x^4 + 3113*x^5 + 106419*x^6 + 7035649*x^7 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 2^1 + 1 = 3,
a(3) = 2^3 + 2^2 + 2*2^1 + 1 = 17,
a(4) = 2^6 + 2^5 + 2*2^4 + 3*2^3 + 3*2^2 + 3*2^1 + 1 = 171. (End)
		

Crossrefs

Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), this sequence (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=2 of A090182, A290759.

Programs

  • Mathematica
    a[n_] := a[n] = Sum[2^i*a[i]*a[n - i - 1], {i, 0, n - 1}];
    a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 17; ContinuedFractionK[If[i == 1, 1, -2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • PARI
    a(n)=if(n==0,1,sum(i=0,n-1,2^i*a(i)*a(n-1-i))) \\  Paul D. Hanna
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n, i, 1); for(k=0, n-1, A[k+1] = if( k<1, 1, A[k]*(1+2^k) + sum(i=1, k-1, 2^i * A[i] * A[k-i]))); A[n])}; /* Michael Somos, Jan 30 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = 1 / (1 - x * subst(A, x, 2*x))); polcoeff(A, n))}; /* Michael Somos, Jan 30 2005 */
    
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015083(n)
      A(2, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=2 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(2*x)) = 1/(1-x/(1-2*x/(1-2^2*x/(1-2^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n-1} 2^k*x*A(2^k*x). - Paul D. Hanna, May 17 2010
a(n) = the upper left term in M^(n-1), M = the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 2, 4, 0, 0, ...
1, 2, 4, 8, 0, ...
1, 2, 4, 8, 16, ...
...
Also, a(n+1) = sum of top row terms of M^(n-1). Example: top row of M^3 = (17, 34, 56, 64, 0, 0, 0, ...); where a(4) = 17 and a(5) = 171 = (17 + 34 + 56 + 64). - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*(2^k)/(x*(2^k) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 05 2016

A125790 Rectangular table where column k equals row sums of matrix power A078121^k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 9, 4, 1, 1, 36, 35, 16, 5, 1, 1, 202, 201, 84, 25, 6, 1, 1, 1828, 1827, 656, 165, 36, 7, 1, 1, 27338, 27337, 8148, 1625, 286, 49, 8, 1, 1, 692004, 692003, 167568, 25509, 3396, 455, 64, 9, 1, 1, 30251722, 30251721, 5866452, 664665, 64350, 6321, 680, 81, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006, corrected Dec 12 2006

Keywords

Comments

Determinant of n X n upper left submatrix is 2^[n(n-1)(n-2)/6] (see A125791). Related to partitions of numbers into powers of 2 (see A078121). Triangle A078121 shifts left one column under matrix square.

Examples

			Recurrence T(n,k) = T(n,k-1) + T(n-1,2*k) is illustrated by:
  T(4,3) = T(4,2) + T(3,6) = 201 + 455 = 656;
  T(5,3) = T(5,2) + T(4,6) = 1827 + 6321 = 8148;
  T(6,3) = T(6,2) + T(5,6) = 27337 + 140231 = 167568.
Rows of this table begin:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...;
  1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ...;
  1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, ...;
  1, 36, 201, 656, 1625, 3396, 6321, 10816, 17361, 26500, 38841, ...;
  1, 202, 1827, 8148, 25509, 64350, 140231, 274856, 497097, ...;
  1, 1828, 27337, 167568, 664665, 2026564, 5174449, 11622976, ...;
  1, 27338, 692003, 5866452, 29559717, 109082974, 326603719, ...;
  1, 692004, 30251721, 356855440, 2290267225, 10243585092, ...; ...
Triangle A078121 begins:
  1;
  1,   1;
  1,   2,   1;
  1,   4,   4,   1;
  1,  10,  16,   8,   1;
  1,  36,  84,  64,  16,  1;
  1, 202, 656, 680, 256, 32, 1; ...
where row sums form column 1 of this table A125790,
and column k of A078121 equals column 2^k-1 of this table A125790.
Matrix cube A078121^3 begins:
     1;
     3,    1;
     9,    6,    1;
    35,   36,   12,   1;
   201,  286,  144,  24,  1;
  1827, 3396, 2300, 576, 48, 1; ...
where row sums form column 3 of this table A125790,
and column 0 of A078121^3 forms column 2 of this table A125790.
		

Crossrefs

Cf. A078121; A002577; A125791; columns: A002577, A125792, A125793, A125794, A125795, A125796; diagonals: A125797, A125798; A125799 (antidiagonal sums); related table: A125800 (q=3).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, ] = T[, 0] = 1; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2015 *)
  • PARI
    {T(n,k,p=0,q=2)=local(A=Mat(1), B); if(n
    				

Formula

T(n,k) = T(n,k-1) + T(n-1,2*k) for n>0, k>0, with T(0,n)=T(n,0)=1 for n>=0.
Conjecture: g.f. for n-th row is (Sum_{i=0..n-1} x^i Sum_{j=0..i} binomial(n+1,j)*T(n,i-j)*(-1)^j)/(1-x)^(n+1) for n > 0. - Mikhail Kurkov, May 03 2025

A034941 Number of labeled triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 15, 735, 76545, 13835745, 3859590735, 1539272109375, 831766748637825, 585243816844111425, 520038240188935042575, 569585968715180280038175, 753960950911045074462890625, 1186626209895384011075327630625, 2190213762744801162239116550679375
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Also the number of 3-uniform hypertrees spanning 2n + 1 labeled vertices. - Gus Wiseman, Jan 12 2019
Number of rank n+1 simple series-parallel matroids on [2n+1]. - Matt Larson, Mar 06 2023

Examples

			a(3) = 5!! * 7^2 = (1*3*5) * 49 = 735.
From _Gus Wiseman_, Jan 12 2019: (Start)
The a(2) = 15 3-uniform hypertrees:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypertrees spanning 7 vertices, and their multiplicities in the labeled case, which add up to a(3) = 735:
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  630 X {{1,2,6},{3,4,7},{5,6,7}}
(End)
		

Crossrefs

Programs

  • Magma
    [(2*n+1)^(n-1)*Factorial(2*n)/(2^n*Factorial(n)): n in [0..15]]; // Vincenzo Librandi, Feb 19 2020
  • Mathematica
    Table[(2n+1)^(n-1)(2n)!/(2^n n!), {n, 0, 14}] (* Jean-François Alcover, Nov 06 2018 *)

Formula

a(n) = A034940(n)/(2n+1).
The closed form a(n) = (2n-1)!! (2n+1)^(n-1) can be obtained from the generating function in A034940. - Noam D. Elkies, Dec 16 2002

Extensions

Typo in a(10) corrected and more terms from Alois P. Heinz, Jun 23 2017

A289837 Number of cliques in the n-tetrahedral graph.

Original entry on oeis.org

1, 1, 2, 16, 76, 261, 757, 2003, 5035, 12286, 29426, 69554, 162670, 376923, 865971, 1973941, 4466853, 10040524, 22430584, 49829116, 110127536, 242254321, 530619937, 1157676711, 2516640751, 5452664426, 11777687182, 25367246038, 54492508610, 116769551831
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2017

Keywords

Comments

Here, "cliques" means complete subgraphs (not necessarily the largest).
Sequence extended to a(1) using formula. - Andrew Howroyd, Jul 18 2017
From Gus Wiseman, Jan 11 2019: (Start)
The n-tetrahedral graph has all 3-subsets of {1,...,n} as vertices, and two are connected iff they share two elements. So a(n) is the number of 3-uniform hypergraphs on n labeled vertices where every two edges have two vertices in common. For example, the a(4) = 16 hypergraphs are:
{}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3},{1,2,4}}
{{1,2,3},{1,3,4}}
{{1,2,3},{2,3,4}}
{{1,2,4},{1,3,4}}
{{1,2,4},{2,3,4}}
{{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4}}
{{1,2,3},{1,2,4},{2,3,4}}
{{1,2,3},{1,3,4},{2,3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 7 unlabeled 3-uniform cliques on 6 vertices, and their multiplicities in the labeled case, which add up to a(6) = 261.
1 X {}
20 X {{1,2,3}}
90 X {{1,3,4},{2,3,4}}
60 X {{1,4,5},{2,4,5},{3,4,5}}
60 X {{1,2,4},{1,3,4},{2,3,4}}
15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
(End)

Crossrefs

Cf. A055795 (maximal cliques), A287232 (independent vertex sets), A290056 (triangular graph).

Programs

  • Mathematica
    Table[(2^(n - 2) - n + 1) Binomial[n, 2] + Binomial[n, 3] +
      5 Binomial[n, 4] + 1, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
    LinearRecurrence[{11, -52, 138, -225, 231, -146, 52, -8}, {1, 1, 2, 16, 76, 261, 757, 2003}, 20] (* Eric W. Weisstein, Jul 21 2017 *)
    CoefficientList[Series[(1 - 10 x + 43 x^2 - 92 x^3 + 91 x^4 - 25 x^5 - 5 x^6 - 8 x^7)/((-1 + x)^5 (-1 + 2 x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 21 2017 *)
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&]],{n,6}] (* Gus Wiseman, Jan 11 2019 *)
  • PARI
    a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4); \\ Andrew Howroyd, Jul 18 2017
    
  • PARI
    Vec(x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Jul 19 2017

Formula

a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4). - Andrew Howroyd, Jul 18 2017
a(n) = 11*a(n-1)-52*a(n-2)+138*a(n-3)-225*a(n-4)+231*a(n-5)-146*a(n-6)+52*a(n-7)-8*a(n-8). - Eric W. Weisstein, Jul 21 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3).
a(n) = (24 - (34+3*2^n)*n + (67+3*2^n)*n^2 - 38*n^3 + 5*n^4) / 24.
(End)
Binomial transform of A323294. - Gus Wiseman, Jan 11 2019

Extensions

a(1)-a(5) and a(21)-a(30) from Andrew Howroyd, Jul 18 2017

A323293 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 271, 5596, 231577, 21286940, 4392750641, 2100400533176
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 6 unlabeled 3-uniform hypertrees spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 271:
    1 X {}
   20 X {{1,2,3}}
   90 X {{1,2,5},{3,4,5}}
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>1&]],{n,8}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019
a(10) and a(11) (using A287232) from Joerg Arndt, Oct 12 2023

A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to meet the requirements is to cover the vertices with zero or more disconnected 3-uniform hypergraphs with each edge having exactly two vertices in common (A323294). - Andrew Howroyd, Aug 18 2019

Examples

			The a(4) = 11:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406.
  210 X {{1,2,3},{4,6,7},{5,6,7}}
  140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}}
   21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}}
   35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
		

Crossrefs

Programs

  • Maple
    b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, k-1)*b(k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)

Extensions

a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323299 Number of 3-uniform hypergraphs on n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 261, 3216, 19617, 80860, 262651, 737716, 1920821, 5013152, 14277485, 47610876, 186355041, 820625616, 3869589607, 19039193980, 96332399701, 499138921736, 2639262062801, 14234781051932, 78188865206145, 437305612997376, 2487692697142251
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
The following are non-isomorphic representatives of the 10 unlabeled 3-uniform hypergraphs on 7 vertices where every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 3216.
    1 X {}
   35 X {{1,2,3}}
  315 X {{1,2,5},{3,4,5}}
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,3,5},{2,3,6},{4,5,6}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&]],{n,8}]

Formula

Binomial transform of A323298.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 14 2019

A323292 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 15 hypergraphs:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

Formula

Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A323294 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(4) = 11 hypergraphs:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    seq(n)={Vec(serlaplace(1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2))} \\ Andrew Howroyd, Aug 18 2019

Formula

a(n) = binomial(n,2) for n >= 5. - Gus Wiseman, Jan 16 2019
Binomial transform is A289837. - Gus Wiseman, Jan 16 2019
a(n) = A000217(n-1) for n >= 5. - Alois P. Heinz, Jan 24 2019
E.g.f.: 1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2. - Andrew Howroyd, Aug 18 2019

A323297 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 16, 76, 271, 1212, 10158, 78290, 503231, 3495966, 33016534, 327625520, 3000119669, 28185006956, 308636238516, 3631959615948, 42031903439809, 493129893459310, 6264992355842706, 84639308481270656, 1159506969481515271, 16131054826385628592
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(4) = 16 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,3,4}}
  {{2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 8 unlabeled 3-uniform hypergraphs on 6 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 271:
   1 X {}
  20 X {{1,2,3}}
  90 X {{1,3,4},{2,3,4}}
  10 X {{1,2,3},{4,5,6}}
  60 X {{1,4,5},{2,4,5},{3,4,5}}
  60 X {{1,2,4},{1,3,4},{2,3,4}}
  15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
  15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

Binomial transform of A323296.
E.g.f.: exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). - Andrew Howroyd, Aug 18 2019

Extensions

a(10)-a(11) from Alois P. Heinz, Aug 11 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019
Showing 1-10 of 12 results. Next