cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003080 Number of rooted triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 111, 345, 1105, 3624, 12099, 41000, 140647, 487440, 1704115, 6002600, 21282235, 75890812, 272000538, 979310627, 3540297130, 12845634348, 46764904745, 170767429511, 625314778963, 2295635155206, 8447553316546, 31153444946778, 115122389065883
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of isomorphism classes of Fano Bott manifolds of complex dimension n (see [Cho-Lee-Masuda-Park]). - Eunjeong Lee, Jun 29 2021

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 305, (4.2.34).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.20).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A332648.

Programs

  • Mathematica
    terms = 30;
    nmax = 2 terms;
    A[] = 0; Do[A[x] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
    DeleteCases[CoefficientList[A[x], x], 0] (* Jean-François Alcover, Sep 02 2018 *)

Formula

a(n)=b(2n+1). b shifts left under transform T where Tb = EULER(E_2(b)). E_2(b) has g.f. (B(x^2)+B(x)^2)/2.
a(n) ~ c * d^n / n^(3/2), where d = 3.90053254788870206167147120260433375638561926371844809... and c = 0.4861961460367182791173441493565088408563977498871021... - Vaclav Kotesovec, Jul 01 2021

Extensions

Sequence extended by Paul Zimmermann, Mar 15 1996
Additional comments from Christian G. Bower

A003081 Number of triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 48, 126, 355, 1037, 3124, 9676, 30604, 98473, 321572, 1063146, 3552563, 11982142, 40746208, 139573646, 481232759, 1669024720, 5819537836, 20390462732, 71762924354, 253601229046, 899586777908, 3202234779826, 11435967528286, 40964243249727
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 306, (4.2.35).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.21).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A332649.

Programs

  • Mathematica
    terms = 31;
    nmax = 2 terms;
    A[_] = 0;
    Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
    g[x_] = (A[x] /. x^k_ -> x^((k - 1)/2)) - x + 1;
    g[x] + x((g[x^3] - g[x]^3)/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2020, after Andrew Howroyd *)

Formula

a(n)=b(2n+1). A003080(n)=c(2n+1).
G.f.: B(x)=C(x)+(C(x^3)-C(x)^3)/3.
G.f.: g(x) + x*(g(x^3) - g(x)^3)/3 where g(x) is the g.f. of A003080. - Andrew Howroyd, Feb 18 2020

Extensions

Extended with formula by Christian G. Bower, 10/98

A287890 Number of unrooted labeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 3, 630, 756000, 2740537800, 22317642547200, 344030189461358400, 8979238155223784448000, 366881017725878906250000000, 22141857318039212329716940800000, 1887349497873286715447530129178400000, 219275034010568207287452830493455155200000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^(n-1)*Factorial(3*n)/(2^n*Factorial(n)): n in [0..12]]; // Vincenzo Librandi, Feb 19 2020
  • Mathematica
    Table[(3 n + 1)^(n-1) (3 n)! / (2^n n!), {n, 0, 15}] (* Vincenzo Librandi, Feb 19 2020 *)
  • PARI
    seq(n)={my(p=serlaplace(serreverse(x*exp(-x^3/2 + O(x^(3*n+1))))/x)); vector(n+1, k, polcoef(p, 3*k-3))} \\ Andrew Howroyd, Feb 17 2020
    

Formula

a(n) = (3*n+1)^(n-1)*(3*n)!/(2^n*n!). - Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(7) and beyond from Andrew Howroyd, Feb 17 2020

A361355 Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 15, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 735, 280, 1, 0, 0, 0, 0, 0, 9345, 938, 1, 0, 0, 0, 0, 0, 76545, 77805, 2989, 1, 0, 0, 0, 0, 0, 0, 1865745, 536725, 9285, 1, 0, 0, 0, 0, 0, 0, 13835745, 27754650, 3334870, 28446, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,  0;
  0, 0,  1,   0;
  0, 0, 15,   1,     0;
  0, 0,  0,  75,     1,     0;
  0, 0,  0, 735,   280,     1,    0;
  0, 0,  0,   0,  9345,   938,    1, 0;
  0, 0,  0,   0, 76545, 77805, 2989, 1, 0;
  ...
		

Crossrefs

Row sums are A007834.

Programs

  • PARI
    \\ B gives A359985 as e.g.f.
    B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
    T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))}
    { my(A=T(9)); for(i=1, #A, print(A[i])) }

Formula

E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353.
E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985.
T(2*n+1, n+1) = A034941(n).
T(2*n, n+1) = A361282(n).

A200313 E.g.f. satisfies: A(x) = exp(x^3*A(x)^3/3!).

Original entry on oeis.org

1, 1, 70, 28000, 33833800, 91842150400, 471920698849600, 4105733038511104000, 55918460253906250000000, 1124922893768186370457600000, 31962429471680921191680301600000, 1237813985055170041194334820761600000, 63474917512551971525535771981021376000000
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x^3/3! + 70*x^6/6! + 28000*x^9/9! + 33833800*x^12/12! + ...
where log(A(x)) = x^3*A(x)^3/3! and
A(x)^3 = 1 + 3*x^3/3! + 270*x^6/6! + 120960*x^9/9! + 155925000*x^12/12! + ...
		

Crossrefs

Programs

  • GAP
    List([0..10],n->(3*n+1)^(n-1)*Factorial(3*n)/(Factorial(n)*Factorial(3)^n)); # Muniru A Asiru, Jul 28 2018
  • Magma
    [(3*n+1)^(n-1)*Factorial(3*n)/(6^n*Factorial(n)): n in [0..30]]; // G. C. Greubel, Jul 27 2018
    
  • Mathematica
    Table[(3*n + 1)^(n - 1)*(3*n)!/(n!*(3!)^n), {n, 0, 30}] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n)=(3*n)!*polcoeff(1/x*serreverse(x*(exp(-x^3/3!+x*O(x^(3*n))))),3*n)}
    
  • PARI
    {a(n)=(3*n+1)^(n-1)*(3*n)!/(n!*(3!)^n)}
    

Formula

a(n) = (3*n+1)^(n-1) * (3*n)!/(n!*(3!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^3/3!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(3*n)/(3*n)!
then a(n,m) = m*(3*n+m)^(n-1) * (3*n)!/(n!*(3!)^n).

A200314 E.g.f. satisfies: A(x) = exp(x^4*A(x)^4/4!).

Original entry on oeis.org

1, 1, 315, 975975, 12909521625, 495181420358625, 44035787449951171875, 7845481113748784765634375, 2526730187976408357560632640625, 1362965093449949100037985665872890625, 1160978904909328561005478318639484556796875
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x^4/4! + 315*x^8/8! + 975975*x^12/12! + ...
where log(A(x)) = x^4*A(x)^4/4! and
A(x)^4 = 1 + 4*x^4/4! + 1680*x^8/8! + 5913600*x^12/12! + 84084000000*x^16/16! + ...
		

Crossrefs

Programs

  • GAP
    List([0..10],n->(4*n+1)^(n-1)*Factorial(4*n)/(Factorial(n)*Factorial(4)^n)); # Muniru A Asiru, Jul 28 2018
  • Magma
    [(4*n+1)^(n-1)*Factorial(4*n)/(24^n*Factorial(n)): n in [0..30]]; // G. C. Greubel, Jul 27 2018
    
  • Mathematica
    Table[(4*n + 1)^(n - 1)*(4*n)!/(n!*(4!)^n), {n, 0, 30}] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n)=(4*n)!*polcoeff(1/x*serreverse(x*(exp(-x^4/4!+x*O(x^(4*n))))),4*n)}
    
  • PARI
    {a(n)=(4*n+1)^(n-1)*(4*n)!/(n!*(4!)^n)};
    

Formula

a(n) = (4*n+1)^(n-1) * (4*n)!/(n!*(4!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^4/4!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(4*n)/(4*n)!
then a(n,m) = m*(4*n+m)^(n-1) * (4*n)!/(n!*(4!)^n).

A200315 E.g.f. satisfies: A(x) = exp(x^5*A(x)^5/5!).

Original entry on oeis.org

1, 1, 1386, 32288256, 4527372986136, 2373840824586206976, 3532226719132271834449776, 12455133709483299692008910094336, 91656142095228409912231665590704016256, 1280796898530759870923631204720457656538791936
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x^5/5! + 1386*x^10/10! + 32288256*x^15/15! +...
where log(A(x)) = x^5*A(x)^5/5! and
A(x)^5 = 1 + 5*x^5/5! + 9450*x^10/10! + 252252000*x^15/15! + 38192529375000*x^20/20! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=(5*n)!*polcoeff(1/x*serreverse(x*(exp(-x^5/5!+x*O(x^(5*n))))),5*n)}
    
  • PARI
    {a(n)=(5*n+1)^(n-1)*(5*n)!/(n!*(5!)^n)}

Formula

a(n) = (5*n+1)^(n-1) * (5*n)! / (n!*(5!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^5/5!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(5*n)/(5*n)!
then a(n,m) = m*(5*n+m)^(n-1) * (5*n)!/(n!*(5!)^n).

A361282 Number of rank n+1 simple connected series-parallel matroids on [2n].

Original entry on oeis.org

0, 1, 75, 9345, 1865745, 554479695, 231052877055, 128938132548225, 92986310399407425, 84250567868935042575, 93744545254140599193375, 125717783386887888296925825, 200041202339679732328342670625, 372688996228146502285257581079375, 803768398459351988653830600415029375
Offset: 1

Views

Author

Matt Larson, Mar 06 2023

Keywords

Examples

			For n=2 the a(2) = 1 rank 3 simple connected series-parallel matroid on [4] is the uniform matroid of rank 3.
		

Crossrefs

Programs

Extensions

Terms a(10)-a(15) from Andrew Howroyd, Mar 09 2023

A338280 Triangle T read by rows: T(n, k) = k*n^(n-k-1) with 0 < k < n.

Original entry on oeis.org

1, 3, 2, 16, 8, 3, 125, 50, 15, 4, 1296, 432, 108, 24, 5, 16807, 4802, 1029, 196, 35, 6, 262144, 65536, 12288, 2048, 320, 48, 7, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 2357947691, 428717762, 58461513, 7086244, 805255, 87846, 9317, 968, 99, 10
Offset: 2

Views

Author

Stefano Spezia, Oct 20 2020

Keywords

Comments

T(n, k) is the number of forests of n - k edges that connect every other labeled vertex to one of the k roots (see Section 3 in Wästlund).

References

  • Alfred Rényi, Some remarks on the theory of trees. MTA Mat. Kut. Inst. Kozl. (Publ. math. Inst. Hungar. Acad. Sci) 4 (1959), 73-85.

Crossrefs

Cf. A000027 (diagonal), A000169, A000272 (1st column), A000312, A007334 (2nd column), A023811 (row sums), A034941, A072590, A075363, A210725.

Programs

  • Mathematica
    Table[k*n^(n-k-1),{n,2,11},{k,1,n-1}]//Flatten
Showing 1-9 of 9 results.