A035082 Number of rooted polygonal cacti (Husimi graphs) with n nodes.
0, 1, 0, 1, 1, 3, 5, 13, 27, 67, 157, 390, 963, 2437, 6186, 15908, 41127, 107148, 280569, 738675, 1953054, 5185364, 13816018, 36934431, 99030038, 266254593, 717652816, 1938831589, 5249221790, 14240130827, 38702218134, 105367669062
Offset: 0
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures.
- F. Harary and E. M. Palmer, Graphical Enumeration, p. 71
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- C. G. Bower, Transforms (2)
- F. Harary and R. Z. Norman, The Dissimilarity Characteristic of Husimi Trees, Annals of Mathematics, 58 1953, pp. 134-141.
- F. Harary and G. E. Uhlenbeck, On the Number of Husimi Trees, Proc. Nat. Acad. Sci. USA vol. 39 pp. 315-322 1953
- N. J. A. Sloane, Transforms
- Index entries for sequences related to cacti
- Index entries for sequences related to rooted trees
Programs
-
PARI
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2} EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*Ser(EulerT(Vec(BIK(p)-1)-Vec(p)))); concat([0], Vec(p))} \\ Andrew Howroyd, Aug 30 2018
Formula
Shifts left under transform T where Ta = EULER(BIK(a)-a).
Comments