cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A035082 Number of rooted polygonal cacti (Husimi graphs) with n nodes.

Original entry on oeis.org

0, 1, 0, 1, 1, 3, 5, 13, 27, 67, 157, 390, 963, 2437, 6186, 15908, 41127, 107148, 280569, 738675, 1953054, 5185364, 13816018, 36934431, 99030038, 266254593, 717652816, 1938831589, 5249221790, 14240130827, 38702218134, 105367669062
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures.
  • F. Harary and E. M. Palmer, Graphical Enumeration, p. 71

Crossrefs

Programs

  • PARI
    BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*Ser(EulerT(Vec(BIK(p)-1)-Vec(p)))); concat([0], Vec(p))} \\ Andrew Howroyd, Aug 30 2018

Formula

Shifts left under transform T where Ta = EULER(BIK(a)-a).

A034940 Number of rooted labeled triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 3, 75, 5145, 688905, 152193195, 50174679555, 23089081640625, 14140034726843025, 11119632520038117075, 10920803043967635894075, 13100477280449146440878025, 18849023772776126861572265625, 32038907667175368299033846026875, 63516199119599233704934379969701875
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Examples

			E.g. a(3) = 5!! 7^3 = (1*3*5) * 343 = 5145.
From _Peter Bala_, Jul 31 2012: (Start)
Relation with rows of A214406: F(x) := A(exp(x)).
(d/dx)^1(F) = F/(1-F^2)
(d/dx)^2(F)) = F*(1 + F^2)/(1 - F^2)^3
(d/dx)^3(F)) = F*(1 + 8*F^2 + 3*F^4)/(1 - F^2)^5
(d/dx)^4(F)) = F*(1 + 33*F^2 + 71*F^4 + 15*F^6)/(1 - F^2)^7
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 307. (4.2.44)

Crossrefs

Programs

Formula

a(n) = b(2*n+1) where e.g.f. of b satisfies B(x)=x*exp(B(x)^2/2).
The closed form a(n) = (2n-1)!! (2n+1)^n can be obtained from the generating function. - Noam D. Elkies, Dec 16 2002
From Peter Bala, Jul 31 2012: (Start)
E.g.f. A(x) = series reversion of x*exp(-1/2*x^2) = sum {n >= 0} a(n)*x^(2*n+1)/(2*n+1)! = x + 3*x^3/3! + 75*x^5/5! + .... The Lagrange inversion formula gives a(n) = (2*n+1)^n*(2*n)!/(2^n*n!).
A(x)^2 = T(x^2), where T denotes the tree function T(x) := sum {n >= 1} n^(n-1)*x^n/n!. A(x)^r = sum {n >= 0} r*(2*n+r)^(n-1)*x^(2*n+r)/(2^n*n!).
x = A(x)*exp(-1/2*A(x)^2). dA/dx = exp(1/2*A^2)/(1-A^2).
Let the function F(x) = A(exp(x)). Then dF/dx = F/(1-F^2). More generally, (d/dx)^(n+1)(F) is a rational function in F(x) given by (d/dx)^(n+1)(F) = F*R(n,F^2)/(1-F^2)^(2*n+1), where R(n,x) is the n-th row generating polynomial of A214406.
(End)

Extensions

a(10) corrected by Jean-François Alcover, May 13 2013
a(12)-a(14) from Alois P. Heinz, Jul 08 2015

A287891 Number of rooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 3, 11, 46, 208, 1002, 5012, 25863, 136519, 733902, 4003475, 22106155, 123313289, 693871975, 3933700703, 22447035938, 128828019447, 743142630614, 4306327193744, 25056121416684, 146325789652514, 857393585946194, 5039223717251954, 29700183601347111, 175496470696059267
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332648.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)} \\ Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(11) and beyond from Andrew Howroyd, Feb 17 2020

A003081 Number of triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 48, 126, 355, 1037, 3124, 9676, 30604, 98473, 321572, 1063146, 3552563, 11982142, 40746208, 139573646, 481232759, 1669024720, 5819537836, 20390462732, 71762924354, 253601229046, 899586777908, 3202234779826, 11435967528286, 40964243249727
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 306, (4.2.35).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.21).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A332649.

Programs

  • Mathematica
    terms = 31;
    nmax = 2 terms;
    A[_] = 0;
    Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
    g[x_] = (A[x] /. x^k_ -> x^((k - 1)/2)) - x + 1;
    g[x] + x((g[x^3] - g[x]^3)/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2020, after Andrew Howroyd *)

Formula

a(n)=b(2n+1). A003080(n)=c(2n+1).
G.f.: B(x)=C(x)+(C(x^3)-C(x)^3)/3.
G.f.: g(x) + x*(g(x^3) - g(x)^3)/3 where g(x) is the g.f. of A003080. - Andrew Howroyd, Feb 18 2020

Extensions

Extended with formula by Christian G. Bower, 10/98

A332648 Array read by antidiagonals: T(n,k) is the number of rooted unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 3, 5, 9, 1, 1, 1, 3, 11, 13, 20, 1, 1, 1, 4, 13, 46, 37, 48, 1, 1, 1, 4, 22, 62, 208, 111, 115, 1, 1, 1, 5, 25, 140, 333, 1002, 345, 286, 1, 1, 1, 5, 37, 176, 985, 1894, 5012, 1105, 719, 1, 1, 1, 6, 41, 319, 1397, 7374, 11258, 25863, 3624, 1842, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1   2    3     4     5      6      7       8
----+-------------------------------------------------
  0 | 1   1    1     1     1      1      1       1 ...
  1 | 1   1    1     1     1      1      1       1 ...
  2 | 1   2    2     3     3      4      4       5 ...
  3 | 1   4    5    11    13     22     25      37 ...
  4 | 1   9   13    46    62    140    176     319 ...
  5 | 1  20   37   208   333    985   1397    3059 ...
  6 | 1  48  111  1002  1894   7374  11757   31195 ...
  7 | 1 115  345  5012 11258  57577 103376  331991 ...
  8 | 1 286 1105 25863 68990 463670 937179 3643790 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000081(n+1), A003080, A287891.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n,k,Col(R(n,k)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }

A345955 Number of isomorphism classes of indecomposable Fano Bott manifolds of complex dimension n.

Original entry on oeis.org

1, 1, 3, 7, 21, 60, 189, 595, 1948, 6455, 21804, 74464, 257311, 896874, 3151564, 11148982, 39680010, 141969156, 510352307, 1842370850, 6676349598, 24277171876, 88556616799, 323959047186, 1188237214539, 4368874535437, 16099389598907, 59449932709972, 219953954227839
Offset: 1

Views

Author

Eunjeong Lee, Jun 29 2021

Keywords

Comments

a(n) is also the number of rooted triangular cacti with 2n+1 nodes (n triangles) with one triangle at the root vertex.

Crossrefs

Cf. A003080.

Formula

G.f.: (x/2)*(F(x^2)+F(x)^2) where F(x) is the g.f. of A003080 (see the equation (1) in [Harary-Uhlenbeck] or [Cho-Lee-Masuda-Park, Lemma 4.3]).
Showing 1-6 of 6 results.