cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003080 Number of rooted triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 111, 345, 1105, 3624, 12099, 41000, 140647, 487440, 1704115, 6002600, 21282235, 75890812, 272000538, 979310627, 3540297130, 12845634348, 46764904745, 170767429511, 625314778963, 2295635155206, 8447553316546, 31153444946778, 115122389065883
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of isomorphism classes of Fano Bott manifolds of complex dimension n (see [Cho-Lee-Masuda-Park]). - Eunjeong Lee, Jun 29 2021

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 305, (4.2.34).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.20).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A332648.

Programs

  • Mathematica
    terms = 30;
    nmax = 2 terms;
    A[] = 0; Do[A[x] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
    DeleteCases[CoefficientList[A[x], x], 0] (* Jean-François Alcover, Sep 02 2018 *)

Formula

a(n)=b(2n+1). b shifts left under transform T where Tb = EULER(E_2(b)). E_2(b) has g.f. (B(x^2)+B(x)^2)/2.
a(n) ~ c * d^n / n^(3/2), where d = 3.90053254788870206167147120260433375638561926371844809... and c = 0.4861961460367182791173441493565088408563977498871021... - Vaclav Kotesovec, Jul 01 2021

Extensions

Sequence extended by Paul Zimmermann, Mar 15 1996
Additional comments from Christian G. Bower

A287891 Number of rooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 3, 11, 46, 208, 1002, 5012, 25863, 136519, 733902, 4003475, 22106155, 123313289, 693871975, 3933700703, 22447035938, 128828019447, 743142630614, 4306327193744, 25056121416684, 146325789652514, 857393585946194, 5039223717251954, 29700183601347111, 175496470696059267
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332648.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)} \\ Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(11) and beyond from Andrew Howroyd, Feb 17 2020

A332649 Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 6, 1, 1, 1, 1, 3, 7, 8, 11, 1, 1, 1, 1, 4, 8, 25, 19, 23, 1, 1, 1, 1, 4, 13, 31, 88, 48, 47, 1, 1, 1, 1, 5, 14, 67, 132, 366, 126, 106, 1, 1, 1, 1, 5, 20, 80, 372, 636, 1583, 355, 235, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1  2   3    4    5     6     7     8      9
----+-------------------------------------------------
  0 | 1  1   1    1    1     1     1     1      1 ...
  1 | 1  1   1    1    1     1     1     1      1 ...
  2 | 1  1   1    1    1     1     1     1      1 ...
  3 | 1  2   2    3    3     4     4     5      5 ...
  4 | 1  3   4    7    8    13    14    20     22 ...
  5 | 1  6   8   25   31    67    80   143    165 ...
  6 | 1 11  19   88  132   372   504  1093   1391 ...
  7 | 1 23  48  366  636  2419  3659  9722  13485 ...
  8 | 1 47 126 1583 3280 16551 28254 91391 138728 ...
...
		

Crossrefs

Columns k=1..4 are A000012, A000055(n+1), A003081, A287892.

Programs

  • PARI
    \\ here R(n,k) is column k+1 of A332648.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    U(n,k)={my(p=Ser(R(n,k-1))); my(g(d)=subst(p + O(x*x^(n\d)), x, x^d)); Vec(g(1) + x*sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/(2*k) - x*(g(1)^k)/2 + x*if(k%2==0, g(2)^(k/2) - g(1)^2*g(2)^(k/2-1))/4)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n, k, Col(U(n,k+1)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }
Showing 1-3 of 3 results.