cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003081 Number of triangular cacti with 2n+1 nodes (n triangles).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 48, 126, 355, 1037, 3124, 9676, 30604, 98473, 321572, 1063146, 3552563, 11982142, 40746208, 139573646, 481232759, 1669024720, 5819537836, 20390462732, 71762924354, 253601229046, 899586777908, 3202234779826, 11435967528286, 40964243249727
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 306, (4.2.35).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.21).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A332649.

Programs

  • Mathematica
    terms = 31;
    nmax = 2 terms;
    A[_] = 0;
    Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
    g[x_] = (A[x] /. x^k_ -> x^((k - 1)/2)) - x + 1;
    g[x] + x((g[x^3] - g[x]^3)/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2020, after Andrew Howroyd *)

Formula

a(n)=b(2n+1). A003080(n)=c(2n+1).
G.f.: B(x)=C(x)+(C(x^3)-C(x)^3)/3.
G.f.: g(x) + x*(g(x^3) - g(x)^3)/3 where g(x) is the g.f. of A003080. - Andrew Howroyd, Feb 18 2020

Extensions

Extended with formula by Christian G. Bower, 10/98

A287892 Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 1, 3, 7, 25, 88, 366, 1583, 7336, 34982, 172384, 867638, 4452029, 23194392, 122462546, 653957197, 3527218134, 19192275883, 105248481503, 581223149532, 3230039198628, 18053111982952, 101426901301489, 572554846192811, 3246191706162233, 18478844801342495
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332649.

Programs

  • PARI
    \\ Here G(n) is A287891 as vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)}
    seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p,x,x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ Andrew Howroyd, Feb 18 2020

Formula

G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891.

Extensions

a(0) changed and terms a(12) and beyond from Andrew Howroyd, Feb 18 2020

A332648 Array read by antidiagonals: T(n,k) is the number of rooted unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 3, 5, 9, 1, 1, 1, 3, 11, 13, 20, 1, 1, 1, 4, 13, 46, 37, 48, 1, 1, 1, 4, 22, 62, 208, 111, 115, 1, 1, 1, 5, 25, 140, 333, 1002, 345, 286, 1, 1, 1, 5, 37, 176, 985, 1894, 5012, 1105, 719, 1, 1, 1, 6, 41, 319, 1397, 7374, 11258, 25863, 3624, 1842, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1   2    3     4     5      6      7       8
----+-------------------------------------------------
  0 | 1   1    1     1     1      1      1       1 ...
  1 | 1   1    1     1     1      1      1       1 ...
  2 | 1   2    2     3     3      4      4       5 ...
  3 | 1   4    5    11    13     22     25      37 ...
  4 | 1   9   13    46    62    140    176     319 ...
  5 | 1  20   37   208   333    985   1397    3059 ...
  6 | 1  48  111  1002  1894   7374  11757   31195 ...
  7 | 1 115  345  5012 11258  57577 103376  331991 ...
  8 | 1 286 1105 25863 68990 463670 937179 3643790 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000081(n+1), A003080, A287891.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n,k,Col(R(n,k)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }

A332650 Number of polygonal cacti on 2n-1 unlabeled nodes with every polygon having an odd prime number of edges.

Original entry on oeis.org

1, 1, 2, 4, 10, 30, 105, 400, 1654, 7229, 32944, 154749, 744973, 3655993, 18232812, 92162974, 471301437, 2434542190, 12687850499, 66646225443, 352548333438, 1876770716627, 10048289587337, 54079948967654, 292447643655469, 1588388448970674, 8661869330014601
Offset: 1

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Examples

			a(3) = 2 because there are two cacti on 5 nodes which are a pentagon and 2 triangles joined at a node.
		

Crossrefs

Programs

  • PARI
    \\ Here UCacti gives number of unrooted cacti with restricted polygons.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    RCacti(u)={my(v=[1]); while(#v<#u, my(g=x*Ser(v), g2=subst(g,x,x^2) + O(x^2*x^#v), r=sum(k=1, #u-1, my(c=u[k+1]); if(c, c*(g^k + g^(k%2)*g2^(k\2))))/2 + O(x^#u)); v=concat([1], EulerT(Vec(r, 1-serprec(r, x))))); v}
    UCacti(u)={my(p=x*Ser(RCacti(u))); my(g(d)=subst(p + O(x*x^(#u\d)), x, x^d)); Vec(g(1) + sum(k=1, #u, my(c=u[k]); if(c, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/(2*k) - (g(1)^k)/2 + if(k%2==0, g(2)^(k/2) - g(1)^2*g(2)^(k/2-1))/4)))}
    seq(n)={my(v=UCacti(vector(2*n-1, i, i>2 && isprime(i)))); vector(n, i, v[2*i-1])}

A332651 Number of polygonal cacti on n unlabeled nodes with every polygon having an even number of edges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 4, 2, 7, 9, 14, 26, 48, 71, 154, 243, 478, 894, 1631, 3149, 6062, 11295, 22469, 42900, 83528, 164829, 321012, 632960, 1255613, 2472803, 4928140, 9808439, 19533534, 39134059, 78345317, 157177556, 316398963, 636790282, 1284910954
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

Bridges are disallowed.

Examples

			a(6) = 1 corresponding with a hexagon.
a(7) = 1 corresponding with two quadrilaterals joined at a node.
		

Crossrefs

Programs

  • PARI
    \\ See A332650 for UCacti.
    seq(n)={concat([1], UCacti(vector(n, i, i>2&&i%2==0)))}
Showing 1-5 of 5 results.