cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A287891 Number of rooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 3, 11, 46, 208, 1002, 5012, 25863, 136519, 733902, 4003475, 22106155, 123313289, 693871975, 3933700703, 22447035938, 128828019447, 743142630614, 4306327193744, 25056121416684, 146325789652514, 857393585946194, 5039223717251954, 29700183601347111, 175496470696059267
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332648.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)} \\ Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(11) and beyond from Andrew Howroyd, Feb 17 2020

A332649 Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 6, 1, 1, 1, 1, 3, 7, 8, 11, 1, 1, 1, 1, 4, 8, 25, 19, 23, 1, 1, 1, 1, 4, 13, 31, 88, 48, 47, 1, 1, 1, 1, 5, 14, 67, 132, 366, 126, 106, 1, 1, 1, 1, 5, 20, 80, 372, 636, 1583, 355, 235, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1  2   3    4    5     6     7     8      9
----+-------------------------------------------------
  0 | 1  1   1    1    1     1     1     1      1 ...
  1 | 1  1   1    1    1     1     1     1      1 ...
  2 | 1  1   1    1    1     1     1     1      1 ...
  3 | 1  2   2    3    3     4     4     5      5 ...
  4 | 1  3   4    7    8    13    14    20     22 ...
  5 | 1  6   8   25   31    67    80   143    165 ...
  6 | 1 11  19   88  132   372   504  1093   1391 ...
  7 | 1 23  48  366  636  2419  3659  9722  13485 ...
  8 | 1 47 126 1583 3280 16551 28254 91391 138728 ...
...
		

Crossrefs

Columns k=1..4 are A000012, A000055(n+1), A003081, A287892.

Programs

  • PARI
    \\ here R(n,k) is column k+1 of A332648.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    U(n,k)={my(p=Ser(R(n,k-1))); my(g(d)=subst(p + O(x*x^(n\d)), x, x^d)); Vec(g(1) + x*sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/(2*k) - x*(g(1)^k)/2 + x*if(k%2==0, g(2)^(k/2) - g(1)^2*g(2)^(k/2-1))/4)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n, k, Col(U(n,k+1)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }

A287889 Number of rooted labeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 12, 4410, 7560000, 35626991400, 357082280755200, 6536573599765809600, 197543239414923257856000, 9172025443146972656250000000, 619972004905097945232074342400000, 58507834434071888178873434004530400000, 7455351156359319047773396236777475276800000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^n*Factorial(3*n)/(2^n*Factorial(n)): n in [0..12]]; // Vincenzo Librandi, Feb 19 2020
  • Mathematica
    Table[(3 n + 1)^n (3 n)! / (2^n n!), {n, 0, 15}] (* Vincenzo Librandi, Feb 19 2020 *)
  • PARI
    seq(n)={my(p=serlaplace(serreverse(x*exp(-x^3/2 + O(x^(3*n+1)))))); vector(n+1, k, polcoef(p, 3*k-2))} \\ Andrew Howroyd, Feb 17 2020
    

Formula

a(n) = (3*n+1)^n*(3*n)!/(2^n*n!). - Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(7) and beyond from Andrew Howroyd, Feb 17 2020

A287890 Number of unrooted labeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 3, 630, 756000, 2740537800, 22317642547200, 344030189461358400, 8979238155223784448000, 366881017725878906250000000, 22141857318039212329716940800000, 1887349497873286715447530129178400000, 219275034010568207287452830493455155200000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^(n-1)*Factorial(3*n)/(2^n*Factorial(n)): n in [0..12]]; // Vincenzo Librandi, Feb 19 2020
  • Mathematica
    Table[(3 n + 1)^(n-1) (3 n)! / (2^n n!), {n, 0, 15}] (* Vincenzo Librandi, Feb 19 2020 *)
  • PARI
    seq(n)={my(p=serlaplace(serreverse(x*exp(-x^3/2 + O(x^(3*n+1))))/x)); vector(n+1, k, polcoef(p, 3*k-3))} \\ Andrew Howroyd, Feb 17 2020
    

Formula

a(n) = (3*n+1)^(n-1)*(3*n)!/(2^n*n!). - Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(7) and beyond from Andrew Howroyd, Feb 17 2020
Showing 1-4 of 4 results.