cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287891 Number of rooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 3, 11, 46, 208, 1002, 5012, 25863, 136519, 733902, 4003475, 22106155, 123313289, 693871975, 3933700703, 22447035938, 128828019447, 743142630614, 4306327193744, 25056121416684, 146325789652514, 857393585946194, 5039223717251954, 29700183601347111, 175496470696059267
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332648.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)} \\ Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(11) and beyond from Andrew Howroyd, Feb 17 2020

A287892 Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 1, 1, 3, 7, 25, 88, 366, 1583, 7336, 34982, 172384, 867638, 4452029, 23194392, 122462546, 653957197, 3527218134, 19192275883, 105248481503, 581223149532, 3230039198628, 18053111982952, 101426901301489, 572554846192811, 3246191706162233, 18478844801342495
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Column k=4 of A332649.

Programs

  • PARI
    \\ Here G(n) is A287891 as vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)}
    seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p,x,x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ Andrew Howroyd, Feb 18 2020

Formula

G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891.

Extensions

a(0) changed and terms a(12) and beyond from Andrew Howroyd, Feb 18 2020

A287889 Number of rooted labeled 4-cactus graphs on 3n+1 nodes.

Original entry on oeis.org

1, 12, 4410, 7560000, 35626991400, 357082280755200, 6536573599765809600, 197543239414923257856000, 9172025443146972656250000000, 619972004905097945232074342400000, 58507834434071888178873434004530400000, 7455351156359319047773396236777475276800000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2017

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^n*Factorial(3*n)/(2^n*Factorial(n)): n in [0..12]]; // Vincenzo Librandi, Feb 19 2020
  • Mathematica
    Table[(3 n + 1)^n (3 n)! / (2^n n!), {n, 0, 15}] (* Vincenzo Librandi, Feb 19 2020 *)
  • PARI
    seq(n)={my(p=serlaplace(serreverse(x*exp(-x^3/2 + O(x^(3*n+1)))))); vector(n+1, k, polcoef(p, 3*k-2))} \\ Andrew Howroyd, Feb 17 2020
    

Formula

a(n) = (3*n+1)^n*(3*n)!/(2^n*n!). - Andrew Howroyd, Feb 17 2020

Extensions

a(0) changed and terms a(7) and beyond from Andrew Howroyd, Feb 17 2020
Showing 1-3 of 3 results.