cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125792 Column 2 of table A125790; also equals row sums of matrix power A078121^2.

Original entry on oeis.org

1, 3, 9, 35, 201, 1827, 27337, 692003, 30251721, 2320518947, 316359580361, 77477180493603, 34394869942983369, 27893897106768940835, 41603705003444309596873, 114788185359199234852802339, 588880400923055731115178072777, 5642645813427132737155703265972003
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Comments

Triangle A078121 shifts left one column under matrix square and is related to partitions into powers of 2.
Number of partitions of 2^n into powers of 2, excluding the trivial partition 2^n=2^n. - Valentin Bakoev, Feb 15 2009

Examples

			G.f.: 1 + 3*x + 9*x^2 + 35*x^3 + 201*x^4 + 1827*x^5 + 27337*x^6 + 692003*x^7 + ...
To obtain t_2(5,1) we use the table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,16(= k*m^{n-1}). It is 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 1,3,5,7,9,11,13,15,17 1,9,25,49,81 1,35,165 1,201 Column 1 contains the first 5 members of A125792. [_Valentin Bakoev_, Feb 15 2009]
		

Crossrefs

Adding 1 to the members of A125792 we obtain A002577. [Valentin Bakoev, Feb 15 2009]
A diagonal of A152977.

Programs

  • Maple
    g:= proc(b, n, k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1, n+1,2)-1: seq(a(n), n=0..25);  # Alois P. Heinz, Feb 27 2009
  • Mathematica
    T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, ] = T[, 0] = 1; Table[T[n, 2], {n, 0, 20} ] (* Jean-François Alcover, Jun 15 2015 *)
  • PARI
    {a(n)=local(p=2,q=2,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^p)[n+1,c+1]))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n, k=3) = if(n<1, n==0, sum(i=1, k, a(n-1, 2*i-1)))}; /* Michael Somos, Nov 24 2016 */

Formula

Is this sequence the same as A002575 (coefficients of Bell's formula)?
Denote the sum m^n + m^n + ... + m^n, k times, by k*m^n (m > 1, n > 0 and k are natural numbers). The general formula for the number of all partitions of the sum k*m^n into powers of m, smaller than m^n, is t_m(n, k)= 1 when n=1 or k=0, or = t_m(n, k-1) + Sum_{j=1..m} t_m(n-1, (k-1)*n+j), when n > 1 and k > 0. A125792 is obtained for m=2 and n=1,2,3,... [Valentin Bakoev, Feb 15 2009]
a(n) = A145515(n+1,2)-1. - Alois P. Heinz, Feb 27 2009
From Benedict W. J. Irwin, Nov 16 2016: (Start)
Conjecture: a(n+1) = Sum_{i_1=1..3} Sum_{i_2=1..2*i_1-1} ... Sum_{i_n=1..2*i_(n-1)-1} (2*i_n - 1). For example:
a(2) = Sum_{i=1..3} 2*i-1.
a(3) = Sum_{i=1..3} Sum_{j=1..2*i-1} 2*j-1.
a(4) = Sum_{i=1..3} Sum_{j=1..2*i-1} Sum_{k=1..2*j-1} 2*k-1. (End)