cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116993 a(n) is the least number having exactly n representations as a product of two palindromes.

Original entry on oeis.org

13, 1, 4, 44, 66, 484, 4444, 7326, 6666, 48884, 73326, 493284, 888888, 666666, 5426124, 4888884, 6672666, 7333326, 44888844, 73399326, 246888642, 67333266, 4073662593, 4893772884, 4533773244, 6800659866, 2715775062, 1481331852, 493777284, 740665926, 8147325186, 5431550124, 74807258526
Offset: 0

Views

Author

Giovanni Resta, Apr 02 2006

Keywords

Comments

a(20) <= 733333326; a(34) <= 666666666666; a(39) <= 4888888888884 and a(44) <= 7333333333326. - Farideh Firoozbakht, Dec 10 2006

Examples

			a(0)=13 since 13 is the smallest number that cannot be represented as a product of two palindromes.
a(5)=484 since 484 = 1*484 = 2*242 = 4*121 = 22*22 = 11*44.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n], #<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]]; a[n_]:=(For[m=1, f[m] != n, m++ ]; m); Do[Print[a[n]], {n, 0, 18}] (* Farideh Firoozbakht, Dec 10 2006 *)

Extensions

More terms from Farideh Firoozbakht, Dec 10 2006
a(19)-a(27) from Donovan Johnson, Aug 04 2009
More terms from David A. Corneth, Aug 10 2025

A125834 Numbers that have exactly 15 representations as a product of two palindromes.

Original entry on oeis.org

4888884, 8896888, 13345332, 74732526, 100999899, 140732592, 179555376, 269130862, 295777482, 444888444, 734059326, 880968088, 978745768, 1032039008, 1183109928, 1321452132, 1399939992, 1548058512, 1614785172, 1886140256
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 11 2006

Keywords

Examples

			4888884 is in the sequence since 4888884 = 1*4888884 = 2*2444442 = 4*1222221 = 11*444444 = 22*222222 = 44*111111 = 111*44044 = 121*40404 = 222*22022 = 242*20202 = 444*11011 = 484*10101 = 1001*4884 = 1221*4004 = 2002*2442.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n],#<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]];Do[If[f[n]==15,Print[n]],{n,125000000}]

Extensions

a(6)-a(20) from Donovan Johnson, Aug 05 2009
Showing 1-2 of 2 results.