A116993 a(n) is the least number having exactly n representations as a product of two palindromes.
13, 1, 4, 44, 66, 484, 4444, 7326, 6666, 48884, 73326, 493284, 888888, 666666, 5426124, 4888884, 6672666, 7333326, 44888844, 73399326, 246888642, 67333266, 4073662593, 4893772884, 4533773244, 6800659866, 2715775062, 1481331852, 493777284, 740665926, 8147325186, 5431550124, 74807258526
Offset: 0
Examples
a(0)=13 since 13 is the smallest number that cannot be represented as a product of two palindromes. a(5)=484 since 484 = 1*484 = 2*242 = 4*121 = 22*22 = 11*44.
Links
- David A. Corneth, Some upper bounds on a(n)
Programs
-
Mathematica
f[n_]:=f[n]=Length[Select[Divisors[n], #<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]]; a[n_]:=(For[m=1, f[m] != n, m++ ]; m); Do[Print[a[n]], {n, 0, 18}] (* Farideh Firoozbakht, Dec 10 2006 *)
Extensions
More terms from Farideh Firoozbakht, Dec 10 2006
a(19)-a(27) from Donovan Johnson, Aug 04 2009
More terms from David A. Corneth, Aug 10 2025
Comments