A125860 Rectangular table where column k equals row sums of matrix power A097712^k, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 12, 4, 1, 1, 86, 69, 22, 5, 1, 1, 698, 612, 178, 35, 6, 1, 1, 9551, 8853, 2251, 365, 51, 7, 1, 1, 226592, 217041, 46663, 5990, 651, 70, 8, 1, 1, 9471845, 9245253, 1640572, 161525, 13131, 1057, 92, 9, 1, 1, 705154187
Offset: 0
Examples
Recurrence is illustrated by: T(4,1) = T(3,1) + T(3,2) = 17 + 69 = 86; T(4,2) = T(3,2) + T(3,3) + T(3,4) = 69 + 178 + 365 = 612; T(4,3) = T(3,3) + T(3,4) + T(3,5) + T(3,6) = 178 + 365 + 651 + 1057 = 2251. Rows of this table begin: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,...; 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, ...; 1, 17, 69, 178, 365, 651, 1057, 1604, 2313, 3205, 4301, 5622, 7189,..; 1, 86, 612, 2251, 5990, 13131, 25291, 44402, 72711, 112780, 167486,..; 1, 698, 8853, 46663, 161525, 435801, 996583, 2025458, 3768273, ...; 1, 9551, 217041, 1640572, 7387640, 24530016, 66593821, 156664796, ...; 1, 226592, 9245253, 100152049, 586285040, 2394413286, 7713533212, ...; 1, 9471845, 695682342, 10794383587, 82090572095, 412135908606, ...; 1, 705154187, 93580638024, 2079805452133, 20540291522675, ...; 1, 94285792211, 22713677612832, 723492192295786, 9278896006526795,...; 1, 22807963405043, 10025101876435413, 458149292979837523, ...; ... where column k equals the row sums of matrix power A097712^k for k >= 0. Triangle A097712 begins: 1; 1, 1; 1, 3, 1; 1, 8, 7, 1; 1, 25, 44, 15, 1; 1, 111, 346, 208, 31, 1; 1, 809, 4045, 3720, 912, 63, 1; 1, 10360, 77351, 99776, 35136, 3840, 127, 1; 1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255; ... where A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1); e.g., A097712(5,2) = A097712(4,2) + [A097712^2](4,1) = 44 + 302 = 346. Matrix square A097712^2 begins: 1; 2, 1; 5, 6, 1; 17, 37, 14, 1; 86, 302, 193, 30, 1; 698, 3699, 3512, 881, 62, 1; 9551, 73306, 96056, 34224, 3777, 126, 1; ... Matrix cube A097712^3 begins: 1; 3, 1; 12, 9, 1; 69, 87, 21, 1; 612, 1146, 447, 45, 1; 8853, 22944, 12753, 2019, 93, 1; 217041, 744486, 549453, 120807, 8595, 189, 1; ...
Links
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 16.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[Or[n == 0, k == 0], 1, Sum[T[n - 1, j + k], {j, 0, k}]]; Table[T[#, k] &[n - k + 1], {n, 0, 9}, {k, 0, n + 1}] (* Michael De Vlieger, Dec 10 2024, after PARI *)
-
PARI
T(n,k)=if(n==0 || k==0,1,sum(j=0,k,T(n-1,j+k)))
Formula
T(n,k) = Sum_{j=0..k} T(n-1, j+k) for n > 0, with T(0,n)=T(n,0)=1 for n >= 0.
Comments