cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125911 Product of the even divisors of n.

Original entry on oeis.org

1, 2, 1, 8, 1, 12, 1, 64, 1, 20, 1, 576, 1, 28, 1, 1024, 1, 216, 1, 1600, 1, 44, 1, 110592, 1, 52, 1, 3136, 1, 3600, 1, 32768, 1, 68, 1, 373248, 1, 76, 1, 512000, 1, 7056, 1, 7744, 1, 92, 1, 84934656, 1, 1000, 1, 10816, 1, 11664, 1, 1404928, 1, 116, 1, 207360000, 1, 124, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Times@@Select[Divisors[n],EvenQ],{n,70}] (* Harvey P. Dale, Jul 06 2017 *)
    a[n_] := Module[{e = IntegerExponent[n, 2], o, d}, o = n/2^e; d = DivisorSigma[0, o]; n^(d*(e+1)/2)/o^(d/2)]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if (!(d[k]%2), d[k], 1)); \\ Michel Marcus, Jun 08 2020

Formula

a(n) = A007955(n) / A136655(n).
From Wesley Ivan Hurt, Jun 08 2020: (Start)
a(n) = Product_{d|n, d even} d.
If n is odd or an even squarefree number, then a(n) = floor((2*n)^(1 - ceiling(n/2) + floor(n/2)) * (d(n)/4)). (End)