A125954 Least number k > 0 such that ((2n+1)^k - 2^k)/(2n-1) is prime.
2, 2, 3, 2, 2, 3, 2, 2, 11, 2, 5, 11, 2, 2, 5, 71, 2, 3, 2, 2, 167, 2, 17, 3, 2, 197, 149, 2, 2, 3, 3, 2, 2267, 2, 2, 3, 3, 2, 29, 2, 2531, 167, 2, 7, 3, 3, 2, 61, 2, 2, 11, 2, 2, 157, 2, 5, 7, 7, 149, 3, 5, 2, 379, 2, 41, 3, 2, 2, 3, 79, 11, 3, 2, 2, 97, 3, 2, 3, 3, 2, 1321, 2, 17, 31, 2, 61
Offset: 0
Crossrefs
Programs
-
Mathematica
Do[k = 1; While[ !PrimeQ[((2n+1)^k - 2^k)/(2n-1)], k++ ]; Print[k], {n, 100}] (* Ryan Propper, Mar 29 2007 *) lnk[n_]:=Module[{k=1},While[!PrimeQ[((2n+1)^k-2^k)/(2n-1)],k++];k]; Array[ lnk,90] (* Harvey P. Dale, May 19 2012 *)
Extensions
More terms from Ryan Propper, Mar 29 2007
Comments