A125958 Least number k > 0 such that (2^k + (2n-1)^k)/(2n+1) is prime.
3, 3, 3, 5, 3, 3, 7, 3, 5, 5, 11, 3, 19, 11, 3, 229, 47, 5, 257, 3, 19, 31, 17, 11, 13, 3, 3, 5, 5, 59, 23, 3, 3, 7, 79, 3, 3373, 3, 3, 7, 13, 7, 7, 3527, 593, 19, 3, 3, 13, 13, 11, 19, 41, 3, 7, 109, 3, 227, 13, 5, 5, 3, 239, 5, 3251, 3, 1237, 3, 7, 31, 3, 7
Offset: 1
Examples
For n=4, the expression (2^k + (2n-1)^k)/(2n+1) takes on values 1, 53/9, 39, 2417/9, and 1871 for k=1..5. Since 1871 is the first prime number to occur, a(4) = 5.
Links
- Kevin P. Thompson, Table of n, a(n) for n = 1..95
Crossrefs
Programs
-
Mathematica
Do[k = 1; While[ !PrimeQ[(2^k + (2n-1)^k)/(2n+1)], k++ ]; Print[k], {n, 100}] (* Ryan Propper, Mar 29 2007 *)
Extensions
More terms from Ryan Propper, Mar 29 2007
a(65)-a(72) from Kevin P. Thompson, May 18 2022
Comments