A126024 Number of subsets of {1,2,3,...,n} whose sum is a square integer (including the empty subset).
1, 2, 2, 3, 5, 7, 12, 20, 34, 60, 106, 190, 346, 639, 1183, 2204, 4129, 7758, 14642, 27728, 52648, 100236, 191294, 365827, 700975, 1345561, 2587057, 4981567, 9605777, 18546389, 35851756, 69382558, 134414736, 260658770, 505941852, 982896850
Offset: 0
Keywords
Examples
The subsets of {1,2,3,4,5} that sum to a square are {}, {1}, {1,3}, {4}, {2,3,4}, {1,3,5} and {4,5}. Thus a(5)=7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..990 (terms n=1..100 from T. D. Noe)
Crossrefs
Programs
-
Haskell
import Data.List (subsequences) a126024 = length . filter ((== 1) . a010052 . sum) . subsequences . enumFromTo 1 -- Reinhard Zumkeller, Feb 22 2012, Oct 27 2010
-
Maple
b:= proc(n, i) option remember; (m-> `if`(n=0 or n=m, 1, `if`(n<0 or n>m, 0, b(n, i-1)+ `if`(i>n, 0, b(n-i, i-1)))))(i*(i+1)/2) end: a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+ add(b(j^2-n, n-1), j=isqrt(n)..isqrt(n*(n+1)/2))) end: seq(a(n), n=0..50); # Alois P. Heinz, Feb 02 2017
-
Mathematica
g[n_] := Block[{p = Product[1 + z^i, {i, n}]},Sum[Boole[IntegerQ[Sqrt[k]]]*Coefficient[p, z, k], {k, 0, n*(n + 1)/2}]];Array[g, 35] (* Ray Chandler, Mar 05 2007 *)
Extensions
Extended by Ray Chandler, Mar 05 2007
a(0)=1 prepended by Alois P. Heinz, Jan 30 2017