cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126112 Prime numbers p such that p^4 + (p-1)^4 + (p+1)^4 is a prime number.

Original entry on oeis.org

3, 7, 11, 29, 31, 53, 59, 83, 109, 127, 283, 349, 461, 521, 599, 643, 683, 787, 809, 829, 907, 911, 937, 983, 1093, 1117, 1201, 1289, 1301, 1487, 1523, 1613, 1721, 1877, 2017, 2153, 2267, 2281, 2423, 2521, 2579, 2657, 2677, 2699, 2731, 2741, 2797, 2887, 2969
Offset: 1

Views

Author

Tomas Xordan, Mar 05 2007

Keywords

Examples

			(3-1)^4 + 3^4 + (3+1)^4 = 2^4 + 3^4 + 4^4 = 16 + 81 + 256 = 353 is prime, hence 3 is a term.
(11-1)^4 + 11^4 + (11+1)^4 = 10^4 + 11^4 + 12^4 = 10000 + 14641 + 20736 = 45377 is prime, hence 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimeQ[(n-1)^4+n^4+(n+1)^4];lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
    Select[Prime[Range[500]],PrimeQ[Total[(#+{-1,0,1})^4]]&] (* Harvey P. Dale, Dec 07 2012 *)
  • PARI
    forprime(p=2, 3000, if(isprime(q=(p-1)^4+p^4+(p+1)^4), print1(p, ","))) /* Klaus Brockhaus, Mar 09 2007 */

Extensions

Edited, corrected and extended by Klaus Brockhaus, Mar 09 2007