A126131 a(n) = number of divisors of n which equal any d(k) for 1 <= k <= n, where d(k) is the number of positive divisors of k.
1, 2, 1, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 3, 1, 5, 1, 4, 2, 2, 2, 6, 1, 2, 2, 5, 1, 4, 1, 3, 4, 2, 1, 6, 1, 4, 2, 3, 1, 5, 2, 4, 2, 2, 1, 8, 1, 2, 3, 4, 2, 4, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 7, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 3, 5, 1, 4, 1, 4, 4
Offset: 1
Keywords
Examples
The number of divisors of the integers 1 through 10 form the sequence 1,2,2,3,2,4,2,4,3,4. The divisors of 10 are 1,2,5,10. The divisors of 10 which occur in the sequence of d(k)'s, 1 <= k <= 10, are 1 and 2. So a(10) = 2. From _Michael De Vlieger_, Oct 10 2017: (Start) Records and their indices in a(n). i = index in table n = index of record r in this sequence k = index of n in A002182. MN(n) = rev(A054841(n)) = concatenation of multiplicities of prime divisors of n, e.g., MN(60) = "211". r = record in this sequence. . i n k MN(n) r ---------------------------- 1 1 1 0 1 2 2 2 1 2 3 6 4 11 3 4 12 5 21 5 5 24 6 31 6 6 60 9 211 8 7 120 10 311 9 8 180 11 221 11 9 240 12 411 12 10 360 13 321 14 11 720 14 421 16 12 1260 16 2211 18 13 1680 17 4111 19 14 2520 18 3211 21 15 3360 5111 22 16 5040 19 4211 26 17 7560 20 3311 28 18 10080 21 5211 30 19 15120 22 4311 33 20 20160 23 6211 34 21 25200 24 4221 35 22 30240 5311 38 23 50400 27 5221 40 24 60480 6311 42 25 75600 4321 43 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A126132.
Programs
-
Mathematica
f[n_] :=Length@ Select[Divisors[n], MemberQ[Table[Length@ Divisors[k], {k, n}], # ] &];Table[f[n], {n, 105}] (* Ray Chandler, Dec 20 2006 *) Block[{nn = 105, s}, s = DivisorSigma[0, Range@ nn]; Table[DivisorSum[n, 1 &, MemberQ[Take[s, n], #] &], {n, nn}]] (* Michael De Vlieger, Oct 10 2017 *)
-
PARI
a(n) = #setintersect(divisors(n), Set(vector(n, k, numdiv(k)))); \\ Michel Marcus, Oct 11 2017
Extensions
Extended by Ray Chandler, Dec 20 2006