cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126150 Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 4 times first term.

Original entry on oeis.org

1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2006

Keywords

Examples

			Triangle begins:
  1;
  1, 4, 1;
  6, 24, 36, 24, 6;
  96, 384, 636, 744, 636, 384, 96;
  2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
  151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
  .......................... ....1;
  ................... ....1, ....4, ....1;
  ............ ....6, ...24, ...36, ...24, ....6;
  ..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
  .2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
  2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
  11904 = 4*2976,
and the remaining terms in each row are obtained by the rule illustrated by:
  20256 = 2*11904 - 2976 - 6*96;
  26304 = 2*20256 - 11904 - 6*384;
  28536 = 2*26304 - 20256 - 6*636;
  26304 = 2*28536 - 26304 - 6*744;
  20256 = 2*26304 - 28536 - 6*636;
  11904 = 2*20256 - 26304 - 6*384;
  2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
  11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
  20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
  26304 = 20256 + 3*(636 + 744 + 636);
  28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
		

Crossrefs

Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155.

Programs

  • PARI
    T(n,k)=local(p=3);if(2*n
    				
  • PARI
    /* Alternate Recurrence: */ T(n,k)=local(p=3);if(2*n
    				

Formula

Sum_{k=0..2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n.