A126164 Sum of the proper exponential divisors of n.
0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 10, 0, 0, 0, 6, 5, 0, 3, 14, 0, 0, 0, 2, 0, 0, 0, 36, 0, 0, 0, 10, 0, 0, 0, 22, 15, 0, 0, 18, 7, 10, 0, 26, 0, 6, 0, 14, 0, 0, 0, 30, 0, 0, 21, 14, 0, 0, 0, 34, 0, 0, 0, 48, 0, 0, 15
Offset: 1
Examples
The exponential divisors of 240 are 30, 60 and 240, so a(240) = 30+60 = 90.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Ant King, Mathematica programs for A126164 - A126166.
- Eric Weisstein's World of Mathematics, e-Divisor.
Programs
-
Mathematica
f[p_, e_] := DivisorSum[e, p^# &]; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)
-
PARI
A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ This function from Charles R Greathouse IV, Nov 22 2011 A126164(n) = (A051377(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula
Formula
a(n) = esigma(n) - n = A051377(n) - n.
Comments