cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A129575 Exponential abundant numbers: integers k for which A126164(k) > k, or equivalently for which A051377(k) > 2k.

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 4900, 6084, 6300, 7056, 8100, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 25200, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 39600
Offset: 1

Views

Author

Ant King, Apr 28 2007

Keywords

Comments

There are only 52189 exponential abundant numbers less than 50 million, which suggests that these account for approximately 0.1% of all integers.
Includes 36*m for all m coprime to 6 that are not squarefree. - Robert Israel, Feb 19 2019
The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 0.001043673..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, Sep 02 2022

Examples

			The third integer that is exceeded by its proper exponential divisor sum is 3600. Hence a(3) = 3600.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)  local L,m,i,j;
      L:= ifactors(n)[2];
      m:= nops(L);
      mul(add(L[i][1]^j, j=numtheory:-divisors(L[i][2])),i=1..m)>2*n
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Feb 19 2019
  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];properexponentialdivisorsum[k_]:=Plus@@ExponentialDivisors[k]-k;Select[Range[5 10^4],properexponentialdivisorsum[ # ]># &]
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[40000], esigma[#] > 2*# &] (* Amiram Eldar, May 06 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, sumdiv(f[i, 2], d, f[i, 1]^d)) > 2*k;} \\ Amiram Eldar, May 06 2025

A051377 a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012

Examples

			a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
		

Crossrefs

Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.

Programs

  • GAP
    A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]),d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
  • Haskell
    a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
       sum_e p e = sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A051377 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            add(p^d,d=numtheory[divisors](e)) ;
            a := a*% ;
        end do:
        a ;
    end proc:
    seq(A051377(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023

Extensions

More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009

A126168 Sum of the proper infinitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 19, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 21, 19, 78, 1, 22, 27, 74, 1, 78, 1, 40, 29
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			As the infinitary divisors of 240 are 1, 3, 5, 15, 16, 48, 80, 240, we have a(240) = 1 + 3 + 5 + 15 + 16 + 48 + 80 = 168.
		

Crossrefs

Programs

  • Maple
    A049417 := proc(n)
        local a,pe,k,edgs,p ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            edgs := convert(op(2,pe),base,2) ;
            for k from 0 to nops(edgs)-1 do
                dk := op(k+1,edgs) ;
                a := a*(p^(2^k*(1+dk))-1)/(p^(2^k)-1) ;
            end do:
        end do:
        a ;
    end proc:
    A126168 := proc(n)
        A049417(n)-n ;
    end proc:
    seq(A126168(n),n=1..100) ; # R. J. Mathar, Jul 23 2021
  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; properinfinitarydivisorsum /@ Range[75]
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); a[n_] := isigma[n] - n; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))} \\ This function from Andrew Lelechenko, Apr 22 2014
    A126168(n) = (A049417(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula.

Formula

a(n) = isigma(n) - n = A049417(n) - n.

A321147 Odd exponential abundant numbers: odd numbers k whose sum of exponential divisors A051377(k) > 2*k.

Original entry on oeis.org

225450225, 385533225, 481583025, 538472025, 672624225, 705699225, 985646025, 1121915025, 1150227225, 1281998025, 1566972225, 1685513025, 1790559225, 1826280225, 2105433225, 2242496025, 2466612225, 2550755025, 2679615225, 2930852925, 2946861225, 3132081225
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2018

Keywords

Comments

From Amiram Eldar, Jun 08 2020: (Start)
Exponential abundant numbers that are odd are relatively rare: there are 235290 even exponential abundant number smaller than the first odd term, i.e., a(1) = A129575(235291).
Odd exponential abundant numbers k such that k-1 or k+1 is also exponential abundant number exist (e.g. (73#/5#)^2-1 and (73#/5#)^2 are both exponential abundant numbers, where prime(k)# = A002110(k)). Which pair is the least?
The least exponential abundant number that is coprime to 6 is (31#/3#)^2 = 1117347505588495206025. In general, the least exponential abundant number that is coprime to A002110(k) is (A007708(k+1)#/A002110(k))^2. (End)
The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 5.29...*10^(-9), where f(n) = (4/(Pi^2*n))*Product_{prime p|n}(p/(p+1)) if n is odd and 0 otherwise. - Amiram Eldar, Sep 02 2022

Examples

			225450225 is in the sequence since it is odd and A051377(225450225) = 484323840 > 2 * 225450225.
		

Crossrefs

The exponential version of A005231.
The odd subsequence of A129575.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s={};Do[If[esigma[n]>2n,AppendTo[s,n]],{n,1,10^10,2}]; s

A126166 Larger member of each exponential amicable pair.

Original entry on oeis.org

100548, 502740, 968436, 1106028, 1307124, 1709316, 2312604, 2915892, 3116988, 3720276, 4122468, 4323564, 4725756, 5027400, 4842180, 5329044, 5530140, 5932332, 6133428, 6535620, 6736716, 7138908, 7340004, 7943292, 8345484, 8546580, 8948772, 9753156, 10155348
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the largest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)= 968436 because (937692,968436) is the third exponential amicable pair
		

References

  • Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, m]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of n for which esigma(m)=esigma(n)=m+n and mA051377

Extensions

Link corrected and reference added by Andrew Lelechenko, Dec 04 2011
More terms from Amiram Eldar, May 09 2019

A126165 Smaller member of each exponential amicable pair.

Original entry on oeis.org

90972, 454860, 937692, 1000692, 1182636, 1546524, 2092356, 2638188, 2820132, 3365964, 3729852, 3911796, 4275684, 4548600, 4688460, 4821516, 5003460, 5367348, 5549292, 5913180, 6095124, 6459012, 6640956, 7186788, 7550676, 7732620, 8096508, 8824284, 9188172, 9370116
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the smallest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)=937692 because (937692,968436) is the third exponential amicable pair
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of m for which esigma(m)=esigma(n)=m+n and mA051377.

Extensions

More terms from Amiram Eldar, May 09 2019

A328136 Primitive exponential abundant numbers: the powerful terms of A129575.

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 4900, 6084, 7056, 8100, 10404, 12348, 12996, 19044, 22500, 30276, 34596, 44100, 47916, 49284, 60516, 66564, 79092, 79524, 86436, 88200, 101124, 108900, 112500, 125316, 132300, 133956, 152100, 161604, 176400, 176868, 181476, 191844
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

For squarefree numbers k, esigma(k) = k, where esigma is the sum of exponential divisors function (A051377). Thus, if m is a term (esigma(m) > 2m) and k is a squarefree number coprime to m, then esigma(k*m) = esigma(k) * esigma(m) = k * esigma(m) > 2*k*m, so k*m is an exponential abundant number. Therefore the sequence of exponential abundant numbers (A129575) can be generated from this sequence by multiplying with coprime squarefree numbers.

Examples

			900 is a term since esigma(900) = 2160 > 2 * 900, and 900 = 2^2 * 3^2 * 5^2 is powerful.
6300 is exponential abundant, since esigma(6300) = 15120 > 2 * 6300, but it is not powerful, 6300 = 2^2 * 3^2 * 5^2 * 7, thus it is not in this sequence. It can be generated as a term of A129575 from 900 by 7 * 900 = 6300, since gcd(7, 900) = 1.
		

Crossrefs

Intersection of A001694 and A129575.

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &];aQ[n_] := Min[(f = FactorInteger[n])[[;;,2]]] > 1 && Times @@ fun @@@ f > 2n; Select[Range[200000], aQ]

A318100 Exponential pseudoperfect numbers: numbers n equal to the sum of a subset of their proper exponential divisors.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2018

Keywords

Examples

			900 is in the sequence since its proper exponential divisors are 30, 60, 90, 150, 180, 300, 450 and 900 = 150 + 300 + 450.
		

Crossrefs

The exponential version of A005835. A054979 is a subsequence.

Programs

  • Mathematica
    dQ[n_,m_] := (n>0&&m>0 &&Divisible[n,m]); expDivQ[n_,d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;;,2]], IntegerExponent[ d,ft[[;;,1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d,expDivQ[n,#]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eDeficientQ[n_] := esigma[n] < 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[eDeficientQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    is(n)=my(e=ediv(n)); e=e[1..#e-1]; forsubset(#e, v, if(vecsum(vecextract(e,v))==n, return(1))); 0 \\ Charles R Greathouse IV, Oct 29 2018

A127659 Exponential amicable numbers.

Original entry on oeis.org

90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1546524, 1709316, 2092356, 2312604, 2638188, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3911796, 4122468, 4275684, 4323564, 4548600, 4688460, 4725756, 4821516, 4842180
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Comments

Union of A126165 and A126166. The first 10 terms of this sequence are the same as the first 10 terms of A127660.

Examples

			a(5)=937692 because the fifth non-e-perfect integer that satisfies A126164(A126164(n))=n is 937692.
		

References

  • Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.

Crossrefs

Programs

  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialAmicableNumberQ[k_]:=If[Nest[se,k,2]==k && !se[k]==k,True,False];Select[Range[5 10^6],ExponentialAmicableNumberQ[ # ] &]
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m != n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, May 09 2019 *)

Formula

Non-e-perfect numbers for which A126164(A126164(n))=n.

Extensions

Link corrected by Andrew Lelechenko, Dec 04 2011
More terms from Amiram Eldar, May 09 2019

A331970 The sum of the proper bi-unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 11, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 31, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 60, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 55, 19, 78, 1, 22, 27, 74, 1, 78, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 03 2020

Keywords

Comments

First differs from A126168 at n = 16.

Examples

			a(6) = 6 since A188999(6) - 6 = 12 - 6 = 6.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := bsigma[n] = Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; Array[bs, 100]

Formula

a(n) = A188999(n) - n.
Showing 1-10 of 14 results. Next