A126166
Larger member of each exponential amicable pair.
Original entry on oeis.org
100548, 502740, 968436, 1106028, 1307124, 1709316, 2312604, 2915892, 3116988, 3720276, 4122468, 4323564, 4725756, 5027400, 4842180, 5329044, 5530140, 5932332, 6133428, 6535620, 6736716, 7138908, 7340004, 7943292, 8345484, 8546580, 8948772, 9753156, 10155348
Offset: 1
a(3)= 968436 because (937692,968436) is the third exponential amicable pair
- Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Peter Hagis, Jr., Some results concerning exponential divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
- Ant King, Mathematica programs for A126164 - A126166
- David Moews, Perfect, amicable and sociable numbers.
- J. M. Pedersen, Known exponential amicable pairs.
-
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, m]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)
A127660
Integers whose exponential aliquot sequences end in an exponential amicable pair.
Original entry on oeis.org
90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1383732, 1536416, 1546524, 1709316, 2092356, 2312604, 2502528, 2638188, 2690100, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3907008, 3911796, 4122468, 4248552, 4275684
Offset: 1
a(11) = 1383732 because the eleventh integer whose exponential aliquot sequence ends in an exponential amicable pair is 1383732.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Peter Hagis, Jr., Some results concerning exponential divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
-
ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialAmicableNumberQ[k_]:=If[Nest[se,k,2]==k && !se[k]==k,True,False];Select[Range[5 10^6],ExponentialAmicableNumberQ[Last[eTrajectory[ # ]]] &]
f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-2]] != v[[-1]] > 0 && v[[-3]] == v[[-1]]]; Select[Range[10^6], q] (* Amiram Eldar, Mar 11 2023 *)
A127659
Exponential amicable numbers.
Original entry on oeis.org
90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1546524, 1709316, 2092356, 2312604, 2638188, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3911796, 4122468, 4275684, 4323564, 4548600, 4688460, 4725756, 4821516, 4842180
Offset: 1
a(5)=937692 because the fifth non-e-perfect integer that satisfies A126164(A126164(n))=n is 937692.
- Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
-
ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialAmicableNumberQ[k_]:=If[Nest[se,k,2]==k && !se[k]==k,True,False];Select[Range[5 10^6],ExponentialAmicableNumberQ[ # ] &]
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m != n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, May 09 2019 *)
A348343
Smaller member of a noninfinitary amicable pair: numbers (k, m) such that nisigma(k) = m and nisigma(m) = k, where nisigma(k) is the sum of the noninfinitary divisors of k (A348271).
Original entry on oeis.org
336, 1792, 5376, 6096, 21504, 32004, 97536, 34062336, 64512000, 118008576, 30064771072
Offset: 1
336 is a term since A348271(336) = 448 and A348271(448) = 336.
-
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]], {n,1,10^4}]; seq
A357495
Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.
Original entry on oeis.org
880, 10480, 20080, 24928, 42976, 69184, 110565, 252080, 267712, 489472, 566656, 569240, 603855, 626535, 631708, 687424, 705088, 741472, 786896, 904365, 1100385, 1234480, 1280790, 1425632, 1749824, 1993750, 2012224, 2401568, 2439712, 2496736, 2542496, 2573344, 2671856
Offset: 1
880 is a term since s(880) = 1136 and s(1136) = 880.
-
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 2, 3*10^6}]; seq
A126167
Number of primitive exponential amicable pairs (i,j) with i
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 5, 8, 8, 12
Offset: 1
a(7)=3 because there are 3 primitive exponential pairs (m,n) with m<n and m<=10^7
- Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-350.
A333929
Lesser of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.
Original entry on oeis.org
220, 366, 2620, 3864, 5020, 16104, 16536, 26448, 29760, 43524, 63020, 67344, 69615, 100485, 122265, 142290, 142310, 196248, 196724, 198990, 239856, 240312, 280540, 308620, 309264, 319550, 326424, 341904, 348840, 366792, 469028, 522405, 537744, 580320, 647190, 661776
Offset: 1
220 is a terms since A333926(220) - 220 = 284 and A333926(284) - 284 = 220.
-
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^5}]; seq
A371419
Lesser member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).
Original entry on oeis.org
12, 48, 112, 160, 192, 448, 1984, 12288, 28672, 126976, 196608, 458752, 520192, 786432, 1835008, 2031616, 8126464, 8323072, 33292288, 536805376, 2147221504, 3221225472, 7516192768, 33285996544, 34359476224, 136365211648
Offset: 1
12 is a term since A371418(12) = 14 > 12, and A371418(14) = 12.
-
r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^6}]; seq
-
f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}
A323753
Lesser member of primitive exponential amicable pairs.
Original entry on oeis.org
90972, 937692, 4548600, 44030448, 46884600, 453842928, 712931184, 906494400, 20907057600, 34793179200, 47646797328, 53469838800, 240707724300
Offset: 1
(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
-
rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, n]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)
A323754
Larger member of primitive exponential amicable pairs.
Original entry on oeis.org
100548, 968436, 5027400, 48665232, 48421800, 468723024, 845775504, 938024640, 26989110720, 40792003200, 48200025744, 63433162800, 303008547060
Offset: 1
(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
-
rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, m]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)
Showing 1-10 of 11 results.
Comments