A127656 Lengths of the exponential aliquot sequences.
2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4
Offset: 1
Keywords
Examples
a(4)=3 because the exponential aliquot sequence generated by 4 is <4,2,0> and it has length 3. From _R. J. Mathar_, Oct 05 2017: (Start) The aliquot sequnence may enter a cycle (see A054979) 36 -> 36 -> .. 180 -> 180 -> .. 252 -> 252 -> .. 396 -> 396 -> .. 468 -> 468 -> .. 612 -> 612 -> .. 684 -> 684 -> .. 828 -> 828 -> .. 900 -> 1260 -> 1260 -> .. 1044 -> 1044 -> .. 1116 -> 1116 -> .. 1260 -> 1260 -> .. 1332 -> 1332 -> .. 1352 -> 468 -> 468 -> .. 1476 -> 1476 -> .. 1548 -> 1548 -> .. 1692 -> 1692 -> .. 1728 -> 612 -> 612 -> .. 1800 -> 1800 -> .. 1908 -> 1908 -> .. 1980 -> 1980 -> .. 2124 -> 2124 -> .. 2196 -> 2196 -> .. 2340 -> 2340 -> .. 2412 -> 2412 -> .. 2556 -> 2556 -> .. 2628 -> 2628 -> .. 2700 -> 2700 -> .. 2772 -> 2772 -> .. 2844 -> 2844 -> .. 2880 -> 1800 -> 1800 -> .. (End)
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
- Hagis, Peter Jr., Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
- J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
Programs
-
Maple
A127656 := proc(n) local trac,x; x := n ; trac := [x] ; while true do x := A051377(x)-trac[-1] ; if x = 0 then return 1+nops(trac) ; elif x in trac then return nops(trac) ; end if; trac := [op(trac),x] ; end do: end proc: # R. J. Mathar, Oct 05 2017
-
Mathematica
ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[eTrajectory[ # ]] &/@Range[100] (* Second program: *) f[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}]&) /@ FactorInteger[n]; a[n_] := Length[FixedPointList[f[#]-#&, n]]-1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 04 2023 *)
Comments