cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127660 Integers whose exponential aliquot sequences end in an exponential amicable pair.

Original entry on oeis.org

90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1383732, 1536416, 1546524, 1709316, 2092356, 2312604, 2502528, 2638188, 2690100, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3907008, 3911796, 4122468, 4248552, 4275684
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Comments

Sometimes called the exponential 2-cycle attractor set. The first 10 terms of this sequence are the same as the first 10 terms of A127659.

Examples

			a(11) = 1383732 because the eleventh integer whose exponential aliquot sequence ends in an exponential amicable pair is 1383732.
		

Crossrefs

Subsequences: A127659, A126165, A126166.

Programs

  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialAmicableNumberQ[k_]:=If[Nest[se,k,2]==k && !se[k]==k,True,False];Select[Range[5 10^6],ExponentialAmicableNumberQ[Last[eTrajectory[ # ]]] &]
    f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-2]] != v[[-1]] > 0 && v[[-3]] == v[[-1]]]; Select[Range[10^6], q] (* Amiram Eldar, Mar 11 2023 *)

A127656 Lengths of the exponential aliquot sequences.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Comments

The exponential aliquot sequence is defined by the map x -> A051377(x)-x starting at n.
The length of an exponential aliquot sequence is defined according to the length of its transient part + the length of its terminal cycle.

Examples

			a(4)=3 because the exponential aliquot sequence generated by 4 is <4,2,0> and it has length 3.
From _R. J. Mathar_, Oct 05 2017: (Start)
The aliquot sequnence may enter a cycle (see A054979)
36 -> 36 -> ..
180 -> 180 -> ..
252 -> 252 -> ..
396 -> 396 -> ..
468 -> 468 -> ..
612 -> 612 -> ..
684 -> 684 -> ..
828 -> 828 -> ..
900 -> 1260 -> 1260 -> ..
1044 -> 1044 -> ..
1116 -> 1116 -> ..
1260 -> 1260 -> ..
1332 -> 1332 -> ..
1352 -> 468 -> 468 -> ..
1476 -> 1476 -> ..
1548 -> 1548 -> ..
1692 -> 1692 -> ..
1728 -> 612 -> 612 -> ..
1800 -> 1800 -> ..
1908 -> 1908 -> ..
1980 -> 1980 -> ..
2124 -> 2124 -> ..
2196 -> 2196 -> ..
2340 -> 2340 -> ..
2412 -> 2412 -> ..
2556 -> 2556 -> ..
2628 -> 2628 -> ..
2700 -> 2700 -> ..
2772 -> 2772 -> ..
2844 -> 2844 -> ..
2880 -> 1800 -> 1800 -> ..
(End)
		

Crossrefs

Programs

  • Maple
    A127656 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A051377(x)-trac[-1] ;
            if x = 0 then
                return 1+nops(trac) ;
            elif x in trac then
                return nops(trac) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[eTrajectory[ # ]] &/@Range[100]
    (* Second program: *)
    f[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}]&) /@ FactorInteger[n];
    a[n_] := Length[FixedPointList[f[#]-#&, n]]-1;
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 04 2023 *)

A127657 Integers whose exponential aliquot sequences end in an e-perfect number.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1352, 1476, 1548, 1692, 1728, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2880, 2916, 2988, 3000, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3750, 3852, 3924, 4068, 4140
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Examples

			a(5) = 468 because the fifth integer whose exponential aliquot sequences ends in an e-perfect number is 468.
		

Crossrefs

Programs

  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialPerfectNumberQ[0]=False;ExponentialPerfectNumberQ[k_Integer] :=If[se[k]==k,True,False];Select[Range[5000],ExponentialPerfectNumberQ[Last[eTrajectory[ # ]]] &]
    f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] == v[[-2]] > 0]; Select[Range[4000], q] (* Amiram Eldar, Mar 11 2023 *)

A127658 Exponential aspiring numbers.

Original entry on oeis.org

900, 1352, 1728, 2880, 2916, 3000, 3750, 4356, 5292, 6480, 6760, 8100, 8640, 9464, 9900, 10404, 10648, 11700, 12000, 12096, 13500, 14580, 14872, 15300, 15552, 15876, 16000, 16200, 16224, 17100, 17836, 18252, 19008, 19044, 20160, 20412, 20700, 21780, 22464, 22500
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Comments

Exponential aspiring numbers are those integers whose exponential aliquot sequences end in an e-perfect number, but that are not e-perfect numbers themselves.

Examples

			a(5) = 2916 because the fifth non-e-perfect number whose exponential aliquot sequence ends in an e-perfect number is 2916.
		

Crossrefs

Programs

  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Select[Range[25000],ExponentialPerfectNumberQ[Last[eTrajectory[ # ]]] && !ExponentialPerfectNumberQ[ # ]&]
    f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[32000], q] (* Amiram Eldar, Mar 11 2023 *)
Showing 1-4 of 4 results.