A126173
Larger element of a reduced infinitary amicable pair.
Original entry on oeis.org
2295, 75495, 817479, 1902215, 1341495, 1348935, 2226014, 2421704, 3123735, 3010215, 5644415, 4282215, 7509159, 10106504, 12900734, 24519159, 31356314, 41950359, 43321095, 80870615, 42125144, 85141719, 87689415, 87802407, 86477895, 105993657, 168669879, 129081735
Offset: 1
a(3)=817479 because 817479 is the largest member of the third reduced infinitary amicable pair, (573560,817479)
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Last[data1[[k]]], {k, 1, Length[data1]}]
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
A126176
Number of augmented infinitary amicable pairs (i,j) with i
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 8, 26, 48, 104, 227
Offset: 1
a(9)=48 because there are 48 augmented infinitary amicable pairs (m,n) with m<n and m<=10^9
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data, First[ # ] < 10^k &]], {k, 1, 7}]
A306870
Lesser of reduced bi-unitary amicable pair.
Original entry on oeis.org
2024, 9504, 62744, 496320, 573560, 677144, 1000824, 1173704, 1208504, 1921185, 2140215, 2198504, 2312024, 2580864, 3847095, 4012184, 4682744, 5416280, 6618080, 9247095, 12500865, 12970880, 13496840, 14371104, 23939685, 25942784, 26409320, 28644704, 34093304
Offset: 1
2024 is in the sequence since it is the lesser of the amicable pair (2024, 2295): bsigma(2024) = bsigma(2295) = 4320 = 2024 + 2295 + 1.
-
fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n - 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, n]], {n, 1, 10^7}]; s
A306875
Lesser of reduced unitary amicable pair.
Original entry on oeis.org
172622505, 6217560734, 16017860054, 18102483014, 20021589510, 31285993970, 32576024810, 39270110990, 68700877014, 80170395410, 81142298930, 99542647490, 125182657005, 144194617490, 153113328654, 181335043274, 318710758730, 374642686418, 378482712530, 455440763414
Offset: 1
172622505 is in the sequence since it is the lesser of the amicable pair (172622505, 175742294): usigma(172622505) = usigma(175742294) = 348364800 = 172622505 + 175742294 + 1.
-
us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s={}; Do[m = us[n] - 1; If[m > n && us[m] == n + 1, AppendTo[s, n]], {n, 1, 10^9}]; s
A124663
Number of reduced infinitary amicable pairs (i,j) with i
Original entry on oeis.org
0, 0, 0, 1, 2, 3, 14, 25, 51, 112, 213
Offset: 1
a(7)=14 because there are 14 reduced infinitary amicable pairs (m,n) with m<n and m<=10^7
Cf.
A126169,
A049417,
A126168,
A037445,
A126170,
A126171,
A126172,
A126173,
A126174,
A126175,
A126176.
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data1, First[ # ] < 10^k &]], {k, 1, 7}]
Showing 1-5 of 5 results.
Comments