A126173
Larger element of a reduced infinitary amicable pair.
Original entry on oeis.org
2295, 75495, 817479, 1902215, 1341495, 1348935, 2226014, 2421704, 3123735, 3010215, 5644415, 4282215, 7509159, 10106504, 12900734, 24519159, 31356314, 41950359, 43321095, 80870615, 42125144, 85141719, 87689415, 87802407, 86477895, 105993657, 168669879, 129081735
Offset: 1
a(3)=817479 because 817479 is the largest member of the third reduced infinitary amicable pair, (573560,817479)
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Last[data1[[k]]], {k, 1, Length[data1]}]
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
A126174
Smaller member of an augmented infinitary amicable pair.
Original entry on oeis.org
1252216, 1754536, 2166136, 2362360, 6224890, 7626136, 7851256, 9581320, 12480160, 12494856, 13324311, 15218560, 15422536, 19028296, 29180466, 36716680, 37542190, 40682824, 45131416, 45495352, 56523810, 67195305, 71570296, 80524665, 89740456, 93182440, 101304490
Offset: 1
a(3)=2166136 because 2166136 is the smaller element of the third augmented infinitary amicable pair, (2166136,2580105).
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[First[data[[k]]], {k, 1, Length[data]}]
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, n]], {n, 2, 10^9}]; s (* Amiram Eldar, Jan 20 2019 *)
A126175
Larger member of an augmented infinitary amicable pair.
Original entry on oeis.org
1483785, 2479065, 2580105, 4895241, 7336455, 9100905, 10350345, 16367481, 17307105, 24829945, 15706090, 27866241, 15439545, 23872185, 53763535, 63075321, 41337555, 60923577, 51394665, 56802249, 110691295, 73809496, 89870985, 82771336, 92586585, 150672921, 108212055
Offset: 1
a(3)=2580105 because 2580105 is the larger member of the third augmented infinitary amicable pair, (2166136,2580105).
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[Last[data[[k]]], {k, 1, Length[data]}]
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, k]], {n, 2, 10^9}]; s (* Amiram Eldar, Jan 20 2019 *)
A126172
Smaller element of a reduced infinitary amicable pair.
Original entry on oeis.org
2024, 62744, 573560, 1000824, 1173704, 1208504, 1921185, 2140215, 2198504, 2312024, 2580864, 4012184, 5416280, 9247095, 12500865, 13496840, 23939685, 26409320, 34093304, 37324584, 40818855, 52026920, 66275384, 76011992, 79842104, 101366342, 101589320, 106004024
Offset: 1
a(3)=573560 because 573560 is the smaller element of the third reduced infinitary amicable pair, (573560, 817479)
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[ 10^7]; Table[First[data1[[k]]], {k, 1, Length[data1]}]
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
A124663
Number of reduced infinitary amicable pairs (i,j) with i
Original entry on oeis.org
0, 0, 0, 1, 2, 3, 14, 25, 51, 112, 213
Offset: 1
a(7)=14 because there are 14 reduced infinitary amicable pairs (m,n) with m<n and m<=10^7
Cf.
A126169,
A049417,
A126168,
A037445,
A126170,
A126171,
A126172,
A126173,
A126174,
A126175,
A126176.
-
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data1, First[ # ] < 10^k &]], {k, 1, 7}]
Showing 1-5 of 5 results.
Comments