cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A126173 Larger element of a reduced infinitary amicable pair.

Original entry on oeis.org

2295, 75495, 817479, 1902215, 1341495, 1348935, 2226014, 2421704, 3123735, 3010215, 5644415, 4282215, 7509159, 10106504, 12900734, 24519159, 31356314, 41950359, 43321095, 80870615, 42125144, 85141719, 87689415, 87802407, 86477895, 105993657, 168669879, 129081735
Offset: 1

Views

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=817479 because 817479 is the largest member of the third reduced infinitary amicable pair, (573560,817479)
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Last[data1[[k]]], {k, 1, Length[data1]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n+1, where n>m and isigma(n) is given by A049417(n).

Extensions

a(15)-a(28) from Amiram Eldar, Jan 22 2019

A126174 Smaller member of an augmented infinitary amicable pair.

Original entry on oeis.org

1252216, 1754536, 2166136, 2362360, 6224890, 7626136, 7851256, 9581320, 12480160, 12494856, 13324311, 15218560, 15422536, 19028296, 29180466, 36716680, 37542190, 40682824, 45131416, 45495352, 56523810, 67195305, 71570296, 80524665, 89740456, 93182440, 101304490
Offset: 1

Views

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=2166136 because 2166136 is the smaller element of the third augmented infinitary amicable pair, (2166136,2580105).
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[First[data[[k]]], {k, 1, Length[data]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, n]], {n, 2, 10^9}]; s (* Amiram Eldar, Jan 20 2019 *)

Formula

The values of m for which isigma(m)=isigma(n)=m+n-1, where mA049417(n).

Extensions

a(9)-a(27) from Amiram Eldar, Jan 20 2019

A126172 Smaller element of a reduced infinitary amicable pair.

Original entry on oeis.org

2024, 62744, 573560, 1000824, 1173704, 1208504, 1921185, 2140215, 2198504, 2312024, 2580864, 4012184, 5416280, 9247095, 12500865, 13496840, 23939685, 26409320, 34093304, 37324584, 40818855, 52026920, 66275384, 76011992, 79842104, 101366342, 101589320, 106004024
Offset: 1

Views

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=573560 because 573560 is the smaller element of the third reduced infinitary amicable pair, (573560, 817479)
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[ 10^7]; Table[First[data1[[k]]], {k, 1, Length[data1]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of m for which isigma(m)=isigma(n)=m+n+1, where mA049417(n).

Extensions

a(15)-a(28) from Amiram Eldar, Jan 22 2019

A126176 Number of augmented infinitary amicable pairs (i,j) with i

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 8, 26, 48, 104, 227
Offset: 1

Views

Author

Ant King, Dec 24 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(9)=48 because there are 48 augmented infinitary amicable pairs (m,n) with m<n and m<=10^9
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data, First[ # ] < 10^k &]], {k, 1, 7}]

Formula

augmented infinitary amicable pairs (m,n) satisfy isigma(m)=isigma(n)=m+n-1, with m

A306868 Larger of augmented bi-unitary amicable pair.

Original entry on oeis.org

871585, 1388145, 1483785, 2479065, 2580105, 4895241, 3830625, 7336455, 9100905, 10350345, 16933105, 9843526, 16367481, 24829945, 15706090, 18653745, 27866241, 21080865, 15439545, 23872185, 24401601, 32263905, 53763535, 63075321, 41337555, 60923577, 90245793
Offset: 1

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented bi-unitary amicable pair if bsigma(m) = bsigma(n) = m + n - 1, where bsigma(n) is the sum of bi-unitary divisors of n (A188999).
The terms are ordered according to their lesser counterparts (A306867).

Examples

			871585 is in the sequence since it is the larger of the amicable pair (434784, 871585): bsigma(434784) = bsigma(871585) = 1306368 = 434784 + 871585 - 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n + 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, m]], {n, 1, 10^7}]; s

A306873 Larger of augmented unitary amicable pair.

Original entry on oeis.org

7336455, 41337555, 110691295, 108212055, 154646206, 313439511, 6400149855, 9971007915, 10049576691, 9849706755, 12125842995, 12180547995, 14064001666, 18225635506, 26623431835, 20500208806, 23746912995, 23952459706, 43137954706, 56039259255, 99517314526, 125782774755
Offset: 1

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented unitary amicable pair if usigma(m) = usigma(n) = m + n - 1, where usigma(n) is the sum of unitary divisors of n (A034460).
The terms are ordered according to their lesser counterparts (A306872).

Examples

			7336455 is in the sequence since it is the larger of the amicable pair (6224890, 7336455): usigma(6224890) = usigma(7336455) = 13561344 = 6224890 + 7336455 - 1.
		

Crossrefs

Programs

  • Mathematica
    us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  s={}; Do[m = us[n] + 1; If[m > n && us[m] == n - 1, AppendTo[s, m]], {n, 1, 10^9}]; s

A124663 Number of reduced infinitary amicable pairs (i,j) with i

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 14, 25, 51, 112, 213
Offset: 1

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(7)=14 because there are 14 reduced infinitary amicable pairs (m,n) with m<n and m<=10^7
		

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data1, First[ # ] < 10^k &]], {k, 1, 7}]

Formula

Reduced infinitary amicable pairs (m,n) satisfy isigma(m)=isigma(n)=m+n+1, with m
Showing 1-7 of 7 results.