A126225 Least number k > 0 such that the numerator of Sum_{i=1..k} 1/prime(i)^n is a prime.
2, 2, 3, 2, 3, 5, 3, 11, 3, 22
Offset: 1
Examples
a(1) = 2 corresponds to A024451(2) = 5, a prime. a(2) = 2 corresponds to A061015(2) = 13, a prime.
Programs
-
Mathematica
a[n_] := Block[{i = 1, sum = 0}, While[True, sum += 1/Prime[i]^n; If[PrimeQ[Numerator@sum], Return[i]]; i++ ]] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *) Table[y[x_,y_]:=Numerator[FullSimplify[Sum[1/Prime[m]^x,{m,1,y}]]];k=1;Monitor[Parallelize[While[True,If[PrimeQ[y[n,k]],Break[]];k++];k],k],{n,1,10}] (* J.W.L. (Jan) Eerland, Jan 25 2023 *)
-
PARI
a(n) = {my(k=1, s=1/prime(k)^n); while (! isprime(numerator(s)), k++; s += 1/prime(k)^n); k;} \\ Michel Marcus, May 27 2019
Comments