cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126238 Primes of the form p = prime(k) = (prime(k+3)+prime(k-1))/2.

Original entry on oeis.org

1009, 2789, 4001, 4931, 5431, 5501, 5519, 5839, 6029, 6521, 7103, 7817, 8081, 8147, 8353, 10091, 17011, 18251, 18301, 19751, 21139, 22769, 25013, 25339, 25931, 26681, 27271, 27397, 27791, 28429, 28619, 33149, 33739, 35491, 35521, 36451, 36779
Offset: 1

Views

Author

Artur Jasinski, Dec 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Prime@Select[Range[2, 4000], 2Prime[ # ] == Prime[ # - 1] + Prime[ # + 3] &] (* Ray Chandler, Dec 27 2006 *)
    Transpose[Select[Partition[Prime[Range[4000]],5,1],2#[[2]]==#[[5]]+#[[1]]&]][[2]] (* Harvey P. Dale, Jan 23 2013 *)

Extensions

Edited and extended by Ray Chandler, Dec 27 2006

A126239 Primes of the form p = prime(n+1) such that prime(n) = (prime(n+3)+prime(n-1))/2.

Original entry on oeis.org

1013, 2791, 4003, 4933, 5437, 5503, 5521, 5843, 6037, 6529, 7109, 7823, 8087, 8161, 8363, 10093, 17021, 18253, 18307, 19753, 21143, 22777, 25031, 25343, 25933, 26683, 27277, 27407, 27793, 28433, 28621, 33151, 33749, 35507, 35527, 36457, 36781
Offset: 1

Views

Author

Artur Jasinski, Dec 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Prime@Select[Range[3, 4000], 2Prime[ # - 1] == Prime[ # - 2] + Prime[ # + 2] &] (* Ray Chandler, Dec 27 2006 *)

Extensions

Edited and extended by Ray Chandler, Dec 27 2006

A126240 Primes p such that p = prime(n+3)=(prime(n+6)+prime(n))/2.

Original entry on oeis.org

11, 29, 31, 41, 71, 211, 251, 349, 439, 461, 751, 1031, 1051, 1289, 1291, 1609, 1667, 1723, 2113, 2417, 2423, 2503, 2579, 2711, 2903, 3079, 3919, 3967, 4153, 4271, 4591, 4759, 4951, 5051, 5399, 5693, 6173, 6361, 6451, 6691, 6733, 7229, 7541, 7559, 7793
Offset: 1

Views

Author

Artur Jasinski, Dec 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Do[If[(Prime[n + 6] + Prime[n])/2 == Prime[n + 3], Print[Prime[n + 3]]], {n, 1, 3000}]
    Transpose[Select[Partition[Prime[Range[4000]],7,1],(First[#]+Last[#])/2==#[[4]]&]][[4]] (* Harvey P. Dale, Feb 16 2014 *)

Extensions

Extended by Ray Chandler, Dec 27 2006

A126242 Prime numbers p such that p = prime(n+4)=(prime(n+8)+prime(n))/2.

Original entry on oeis.org

41, 61, 71, 89, 181, 373, 397, 433, 449, 863, 907, 911, 937, 941, 983, 1193, 1259, 1931, 2243, 2251, 2447, 3359, 3361, 3823, 3851, 4057, 4093, 5231, 5297, 5417, 5813, 6421, 6619, 7013, 7151, 7487, 7583, 7907, 8171, 8537, 8563, 8573, 8581, 9157, 9257, 9377
Offset: 1

Views

Author

Artur Jasinski, Dec 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Do[If[(Prime[n + 8] + Prime[n])/2 == Prime[n + 4], Print[Prime[n + 4]]], {n, 1, 3000}]
    Transpose[Select[Partition[Prime[Range[1200]],9,1],(First[#]+Last[#])/2 == #[[5]]&]][[5]] (* Harvey P. Dale, Jul 18 2013 *)

Extensions

Extended by Ray Chandler, Dec 27 2006
Showing 1-4 of 4 results.