cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).

Original entry on oeis.org

2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051, 29881, 67003, 9119521, 6212157481, 5295435634831, 31401519357481261, 77366930214021991992277, 181, 1987, 112374829138729, 114152531605972711, 35874380272246624152764569191134894955972560447869169859142453622851
Offset: 1

Views

Author

Howard L. Warth (hlw6c2(AT)umr.edu), Dec 22 2006

Keywords

Comments

The list is infinite and no term repeats since Sylvester's sequence is an infinite coprime sequence.
However, it appears to be unknown whether all terms in A000058 are squarefree. - Jeppe Stig Nielsen, Apr 23 2020

Examples

			2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443,
10650056950807 = 547 * 607 * 1033 * 31051,
113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481,
12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277.
165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014
		

References

  • Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.

Crossrefs

Programs

  • Maple
    a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;
  • Mathematica
    Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* Paolo Xausa, Sep 09 2024 *)
  • PARI
    v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ Charles R Greathouse IV, Oct 02 2014
  • Sage
    v = [2]
    for n in range(12):
        v.append(v[-1]^2-v[-1]+1)
        print(prime_divisors(v[-1])) # William Stein, Aug 26 2009
    

Extensions

Offset corrected by N. J. A. Sloane, Aug 20 2009
a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009
a(17) corrected by D. S. McNeil, Dec 10 2010
b-file updated at the suggestion of Hans Havermann by Ray Chandler, Feb 27 2015