A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).
2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051, 29881, 67003, 9119521, 6212157481, 5295435634831, 31401519357481261, 77366930214021991992277, 181, 1987, 112374829138729, 114152531605972711, 35874380272246624152764569191134894955972560447869169859142453622851
Offset: 1
Keywords
Examples
2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443, 10650056950807 = 547 * 607 * 1033 * 31051, 113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481, 12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277. 165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014
References
- Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.
Links
- Ray Chandler, Table of n, a(n) for n = 1..28 (first 27 terms from William Stein)
- J. K. Andersen, Factorization of Sylvester's sequence.
- Filip Saidak, Proof of Euclid's Theorem.
- Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Dec. 2006.
Programs
-
Maple
a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;
-
Mathematica
Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* Paolo Xausa, Sep 09 2024 *)
-
PARI
v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ Charles R Greathouse IV, Oct 02 2014
-
Sage
v = [2] for n in range(12): v.append(v[-1]^2-v[-1]+1) print(prime_divisors(v[-1])) # William Stein, Aug 26 2009
Extensions
Offset corrected by N. J. A. Sloane, Aug 20 2009
a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009
a(17) corrected by D. S. McNeil, Dec 10 2010
b-file updated at the suggestion of Hans Havermann by Ray Chandler, Feb 27 2015
Comments