cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126325 Triangle read by rows: T(n,k) = binomial(2*n+1, n-k) (1 <= k <= n).

Original entry on oeis.org

1, 5, 1, 21, 7, 1, 84, 36, 9, 1, 330, 165, 55, 11, 1, 1287, 715, 286, 78, 13, 1, 5005, 3003, 1365, 455, 105, 15, 1, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 11 2007

Keywords

Comments

T(n,k) is the total area between the lines y=k-1 and y=k in all Dyck paths of semilength n (1 <= k <= n).
With row and column indices starting at 0, this triangle is the Riordan array ( c(x)^4/(2 - c(x)), x*c^2(x) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Mar 12 2022
Equals A111418 when k starts at 0. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins:
     1;
     5,    1;
    21,    7,    1;
    84,   36,    9,    1;
   330,  165,   55,   11,    1;
  1287,  715,  286,   78,   13,    1;
  5005, 3003, 1365,  455,  105,   15,    1;
  ..
		

Crossrefs

Programs

  • GAP
    T:=Flat(List([1..10],n->List([1..n],k->Binomial(2*n+1,n-k)))); # Muniru A Asiru, Oct 24 2018
  • Magma
    [[Binomial(2*n+1, n-k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    T:=(n,k)->binomial(2*n+1,n-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := Binomial[2n + 1, n - k]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1,15, for(k=1,n, print1(binomial(2*n+1, n-k), ", "))) \\ G. C. Greubel, Oct 23 2018
    

Formula

T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for n >= 2, k >= 2.
T(n,1) = A002054(n); T(n,2) = A003516(n); T(n,3) = A030053(n);
T(n,4) = A030054(n); T(n,5) = A030055(n).
Row sums yield A008549.