A126325 Triangle read by rows: T(n,k) = binomial(2*n+1, n-k) (1 <= k <= n).
1, 5, 1, 21, 7, 1, 84, 36, 9, 1, 330, 165, 55, 11, 1, 1287, 715, 286, 78, 13, 1, 5005, 3003, 1365, 455, 105, 15, 1, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 1
Examples
Triangle begins: 1; 5, 1; 21, 7, 1; 84, 36, 9, 1; 330, 165, 55, 11, 1; 1287, 715, 286, 78, 13, 1; 5005, 3003, 1365, 455, 105, 15, 1; ..
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
T:=Flat(List([1..10],n->List([1..n],k->Binomial(2*n+1,n-k)))); # Muniru A Asiru, Oct 24 2018
-
Magma
[[Binomial(2*n+1, n-k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 23 2018
-
Maple
T:=(n,k)->binomial(2*n+1,n-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Mathematica
t[n_, k_] := Binomial[2n + 1, n - k]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten
-
PARI
for(n=1,15, for(k=1,n, print1(binomial(2*n+1, n-k), ", "))) \\ G. C. Greubel, Oct 23 2018
Comments