cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126358 Number of base 4 n-digit numbers with adjacent digits differing by one or less.

Original entry on oeis.org

1, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346, 279167724890, 730870592324
Offset: 0

Views

Author

R. H. Hardin, Dec 26 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1
a(n) is the number of quaternary sequences of length n such that no two adjacent terms differ by exactly 1. - David Nacin, May 31 2017

Programs

  • Magma
    [1] cat [(2*Fibonacci(2*n+1)): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
  • Mathematica
    Join[{1}, Table[2*Fibonacci[2*n+1],{n,1,1001}]] (* Vincenzo Librandi, Jun 28 2012 *)

Formula

a(n) = 2*F(2*n+1) = A052995(n+1) for n>0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: (1+x-x^2)/(1-3*x+x^2). - Bruno Berselli, Jun 28 2012
From David Nacin, May 31 2017: (Start)
For n>2, a(n) = 3*a(n-1)-a(n-2), a(0)=1, a(1)=4, a(2)=10.
For n>0, a(n) = (1-1/sqrt(5))(3/2-sqrt(5)/2)^n + (1+1/sqrt(5))(3/2+sqrt(5)/2)^n. (End)