A126528
Number of base 7 n-digit numbers with adjacent digits differing by five or less.
Original entry on oeis.org
1, 7, 47, 317, 2137, 14407, 97127, 654797, 4414417, 29760487, 200635007, 1352612477, 9118849897, 61476161767, 414451220087, 2794088129357, 18836784876577, 126991149906247, 856130823820367, 5771740692453437, 38911098273822457, 262325293105201927
Offset: 0
-
LinearRecurrence[{6, 5}, {1, 7}, 25] (* Paolo Xausa, Aug 08 2024 *)
-
Vec((1+x)/(1-6*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
A002714
Number of different keys with n cuts, depths between 1 and 7 and depth difference at most 1 between adjacent cut depths.
Original entry on oeis.org
1, 7, 19, 53, 149, 421, 1193, 3387, 9627, 27383, 77923, 221805, 631469, 1797957, 5119593, 14578387, 41514003, 118218823, 336653331, 958698053, 2730124261, 7774706437, 22140438345, 63050541515, 179552587883, 511322221559, 1456121982755, 4146683677885
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. A. Coulson, How Many different Keys?, Math. Gaz. vol 53 no 383 (1969), 7-13.
- C. A. Coulson, How many different keys?, Math. Gaz. vol 53 no 383 (1969), 7-13. [Annotated scanned copy]
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,1).
-
A002714:=-(7-9*z-9*z**2+3*z**3)/(-1+4*z-2*z**2-4*z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation; correct up to offset
T := proc(d,n) option remember ; if n = 1 then 1; else if d = 7 then T(d,n-1)+T(d-1,n-1) ; elif d = 1 then T(d,n-1)+T(d+1,n-1) ; else T(d-1,n-1)+T(d,n-1)+T(d+1,n-1) ; fi ; fi ; end: A002714 := proc(n) local d ; add( T(d,n),d=1..7) ; end: seq(A002714(n),n=1..35) ; # R. J. Mathar, Jun 15 2008
-
CoefficientList[Series[(2*x^4-5*x^3-7*x^2+3*x+1)/(-x^4+4*x^3+2*x^2-4*x+1),{x,0,200}],x] (* Vincenzo Librandi, Aug 13 2012 *)
Join[{1}, LinearRecurrence[{4, -2, -4, 1}, {7, 19, 53, 149}, 30]] (* Jean-François Alcover, Jan 07 2019 *)
-
/* from the Knopfmacher et al. reference */
default(realprecision,99); /* using floats */
sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vector(66,n, if (n==1,1,round(sn(n-1,7))) )
/* Joerg Arndt, Aug 13 2012 */
A126394
Number of base 7 n-digit numbers with adjacent digits differing by two or less.
Original entry on oeis.org
1, 7, 29, 125, 543, 2363, 10287, 44787, 194995, 848979, 3696331, 16093291, 70067867, 305065387, 1328210699, 5782837835, 25177641963, 109619822123, 477268896747, 2077959947307, 9047137938475, 39389933855019
Offset: 0
Cf. Base 7 differing by one or less
A126361.
A126475
Number of base 7 n-digit numbers with adjacent digits differing by three or less.
Original entry on oeis.org
1, 7, 37, 203, 1111, 6083, 33305, 182349, 998383, 5466269, 29928491, 163862147, 897165287, 4912089625, 26894291201, 147249532159, 806209189861, 4414093873755, 24167703582839, 132321131623579, 724474371929041
Offset: 0
A126502
Number of base 7 n-digit numbers with adjacent digits differing by four or less.
Original entry on oeis.org
1, 7, 43, 269, 1679, 10483, 65449, 408623, 2551187, 15928021, 99444631, 620870267, 3876326801, 24201367447, 151098247483, 943363239389, 5889771828959, 36772062710083, 229581830200249, 1433365791134783
Offset: 0
Showing 1-5 of 5 results.
Comments