cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A126450 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 165, 45, 7, 1, 5985, 1140, 136, 11, 1, 376992, 52360, 4960, 325, 16, 1, 36288252, 3819816, 292825, 16215, 666, 22, 1, 4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1, 899749479915, 59487568920, 3127595016, 128164707
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Examples

			Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 1, n-k) = C(20,3) = 1140;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 1, n-k) = C(17,2) = 136;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 1, n-k) = C(32,3) = 4960.
Triangle begins:
1;
2, 1;
10, 4, 1;
165, 45, 7, 1;
5985, 1140, 136, 11, 1;
376992, 52360, 4960, 325, 16, 1;
36288252, 3819816, 292825, 16215, 666, 22, 1;
4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1; ...
		

Crossrefs

Columns: A126451, A126452; A126453 (row sums); variants: A126445, A126454, A126457, A107867.

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+1, n-k)

Formula

T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 1, n-k) for n>=k>=0.

A126447 Column 1 of triangle A126445; a(n) = C( C(n+3,3) - 1, n).

Original entry on oeis.org

1, 3, 36, 969, 46376, 3478761, 377447148, 56017460733, 10912535409348, 2703343379981793, 830496702831140346, 310006778438284515093, 138247735223480364826280, 72613463426660610635960445
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+3,3]-1,n],{n,0,20}] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!-1, n)

A126451 Column 0 of triangle A126450; a(n) = C( C(n+2,3) + 1, n).

Original entry on oeis.org

1, 2, 10, 165, 5985, 376992, 36288252, 4935847320, 899749479915, 211531737340440, 62292206224983306, 22453501436688294427, 9723205992282927449305, 4980663327690172963041600, 2978877731799385928100461400, 2057145404864429538334152506640
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(Binomial(n+2,3)+1,n): n in [0..20]]; // Vincenzo Librandi, Mar 10 2014
  • Mathematica
    Table[Binomial[Binomial[n+2,3]+1,n],{n,0,20}] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n)=binomial(n*(n+1)*(n+2)/3!+1, n)
    

Extensions

More terms from Harvey P. Dale, Mar 08 2014

A126456 Column 1 of triangle A126454; a(n) = C( C(n+3,3) + 1, n).

Original entry on oeis.org

1, 5, 55, 1330, 58905, 4187106, 437353560, 63140314380, 12049276177620, 2938311614386005, 891655291709643461, 329600203128234828790, 145830232567505064233200, 76102715775896720790887700
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Binomial[n+3,3]+1,n],{n,0,20}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!+1, n)

A126459 Column 1 of triangle A126457; a(n) = C( C(n+3,3) + 2, n).

Original entry on oeis.org

1, 6, 66, 1540, 66045, 4582116, 470155077, 66983637864, 12655529067060, 3062465626261470, 923729223066105456, 339813167168828020668, 149762733221010818774320, 77904783726874238769542600
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=binomial((n+1)*(n+2)*(n+3)/3!+2, n)

A126453 Row sums of triangle A126450: a(n) = Sum_{k=0..n} C( C(n+2,3) - C(k+2,3) + 1, n-k).

Original entry on oeis.org

1, 3, 15, 218, 7273, 434654, 40417797, 5369210845, 962496995941, 223528473482380, 65221305164439085, 23343099723197369886, 10052235133879615066675, 5126300310101866339983229
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(k=0,n,binomial(binomial(n+2,3)-binomial(k+2,3)+1, n-k))
Showing 1-6 of 6 results.